听觉皮层慢反应临床应用指标的探讨

A Preliminary Study of Seeking a Steady Indicator of Clinical Application in Auditory Cortex Slow Response

赵泽祺;雷冠雄;李雅兰;张铎;申卫东;杨仕明;乔月华;

1:徐州医科大学

2:湘南学院

3:解放军总医院耳鼻咽喉头颈外科

4:徐州医科大学附属医院

摘要
目的探讨听觉皮层慢反应N1波稳定可靠的记录方法及简单易行的成分分析方法。方法以10例听力正常的青年女性为研究对象,年龄2130岁,平均24.5岁±3.5岁,声刺激的同时使用64通道的Ag/AgCl电极帽记录脑电波(electroencephalogram,EEG),刺激声选用1kHz的短纯音(上升期5ms,平台期40ms,下降期5ms,总时长50ms),50dB SL的强度重复给声100次,刺激间隔在1 80030岁,平均24.5岁±3.5岁,声刺激的同时使用64通道的Ag/AgCl电极帽记录脑电波(electroencephalogram,EEG),刺激声选用1kHz的短纯音(上升期5ms,平台期40ms,下降期5ms,总时长50ms),50dB SL的强度重复给声100次,刺激间隔在1 8002 600ms之间随机化,分别用峰值法和面积法记录N1波的潜伏期和振幅。结果 10例对象均可稳定记录到N 1波。(1)以电势最高的六个电极作为测量电极时,峰值法和面积法得到的潜伏期差异无统计学意义(t=-0.661,P>0.05),得到的振幅值差异有统计学意义(t=-6.085,P<0.01);以电势最高的单个电极作为测量电极时,峰值法和面积法得到的潜伏期差异无统计学意义(t=-0.349,P>0.05),得到的振幅值差异仍有统计学意义(t=-5.976,P<0.01)。以六个电极作为测量电极时,面积法计算的振幅(J)/峰值法计算的振幅(Ⅰ)得到的振幅比值(J/I)为0.759±0.086(t=27.768,P<0.01);以单个电极作为测量电极时,得到的振幅比值(J/I)为0.764±0.094(t=25.839,P<0.01);两个比值间差异无统计学意义(t=-1.480,P>0.05);(2)分别以六个电极和单个电极做测量电极时,峰值法和面积法测得的潜伏期差异无统计学意义(峰值法:t=-1.267,P>0.05;面积法:t=0.625,P>0.05),测得的振幅值差异有统计学意义(峰值法:t=4.522,P<0.01;面积法:t=4.658,P<0.01)。结论听觉皮层慢反应N1波的潜伏期比振幅更稳定,更适合作为N1波的研究指标。可用峰值法来分析听觉皮层慢反应N1波的潜伏期,亦可用峰值法测得N1波振幅值后乘以比值常数(本实验中常数大约为0.762)来分析N1波的振幅;N1波的记录可简化为Fcz单电极记录。
关键词
听觉皮层慢反应;潜伏期;振幅
基金项目(Foundation):
国家自然科学基金(81470684);国家自然科学基金(面上项目81670940);; 中国博士后科学基金(2015M571817);; 省级条件建设与民生科技专项资金(BL2014032)项目
作者
赵泽祺;雷冠雄;李雅兰;张铎;申卫东;杨仕明;乔月华;
参考文献

1赵伦,主编.ERPs实验教程[M].南京:东南大学出版社,2010.20~22.

2 Bigelow J,Rossi B,Poremba A.Neural correlates of shortterm memory in primate auditory cortex[J].Front Neurosci,2014,8:250.

3 Kern K,Royter V,Corona-Strauss FI,et al.Habituation analysis of chirp vs tone evoked auditory late responses[J].Conf Proc IEEE Eng Med Biol Soc,2010,2010:6825.

4 Moore DR.The diagnosis and management of auditory processing disorder[J].Lang Speech Hear Serv Sch,2011,42:303.

5 Gopal KV,Bishop CE,Carney L.Auditory measures in clinically depressed individuals.II.Auditory evoked potentials and behavioral speech tests[J].Int J Audiol,2004,43:499.

6 Clapp WC,Kirk IJ,Hamm JP,et al.Induction of LTP in the human auditory cortex by sensory stimulation[J].Eur J Neurosci,2005,22:1135.

7 Luck SJ.An introduction to the event-related potential technique[M].Second edition.Chapter 3supplement.America:The MIT Press,2013.1~6.

8 Hyde M.The N1response and its applications[J].Audiol Neurootol,1997;2:281.

9 Hall JW,III.New handbook of auditory evoked responses[M].London:Allyn&Bacon,2006.506~506.

10 Bertrand O,Perrin F,Pernier J.Evidence for a tonotopic organization of the auditory cortex observed with auditory evoked potentials[J].Acta Otolaryngol Suppl,1991,491:116.

11 Verkindt C,Bertrand O,Perrin F,et al.Tonotopic organization of the human auditory cortex:N100topography and multiple dipole model analysis[J].Electroencephalogr Clin Neurophysiol,1995,96:143.

12 Zhang F,Eliassen J,Anderson J,et al.The time course of the amplitude and latency in the auditory late response evoked by repeated tone bursts[J].J Am Acad Audiol,2009,20:239.

13 Dien J,Khoe W,Mangun GR.Evaluation of PCA and ICA of simulated ERPs:promax vs infomax rotations[J].Hum Brain Mapp,2007,28:742.

14 Yvert B,Fischer C,Bertrand O,et al.Localization of human supratemporal auditory areas from intracerebral auditory evoked potentials using distributed source models[J].Neuroimage,2005,28:140.

15 Ozaki I,Hashimoto I.Human tonotopic maps and their rapid task-related changes studied by magnetic source imaging[J].Can J Neurol Sci,2007,34:146.

16 Lei G,Zhao Z,Li Y,et al.A method to induce human cortical long-term potentiation by acoustic stimulation[J].Acta Otolaryngol,2017,137:1069.