不同强度言语声诱发听性脑干反应及听处理偏侧化分析

Speech-ABR Representations and Non-lateralization Effect for the Stimulation Intensity

符秋养;梁勇;邹岸;王涛;

1:广东省第二人民医院耳鼻咽喉-头颈外科

2:南方医科大学附属南方医院耳鼻咽喉-头颈外科

3:南方医科大学生物医学工程学院

摘要
目的探讨不同强度言语声诱发听性脑干反应(speech evoked auditory brainstem response,s-ABR)的时域和频域变化以及脑干水平是否存在听处理偏侧化现象。方法分别以40、60和80dB HL言语声对29例健康青年行双耳s-ABR检测,分析双耳时域参数中的主波潜伏期、幅值以及频域参数中的基频(F_0)、共振峰(F_1F_5)。结果三种刺激强度下,左右耳各主波潜伏期及幅值之间差异均无统计学意义(P>0.05);随言语刺激声强增大,计算强度每降低20dB时s-ABR各主波潜伏期延长平均值,瞬态性主波V、A、C、O波及周期性主波D、E、F波的潜伏期均显著缩短(P<0.05),幅值显著增加(P<0.05);周期性主波潜伏期延长更明显(P<0.05)。sABR频域分析显示,从F_0及F_1F_5)。结果三种刺激强度下,左右耳各主波潜伏期及幅值之间差异均无统计学意义(P>0.05);随言语刺激声强增大,计算强度每降低20dB时s-ABR各主波潜伏期延长平均值,瞬态性主波V、A、C、O波及周期性主波D、E、F波的潜伏期均显著缩短(P<0.05),幅值显著增加(P<0.05);周期性主波潜伏期延长更明显(P<0.05)。sABR频域分析显示,从F_0及F_1F_5幅值依次降低,与强度变化一致;双耳记录的s-ABR具有很高的相似度,其时域参数和频域参数耳别间差异无统计学意义(P>0.05)。结论 s-ABR较好编码了言语的时域和频域信息,且时域和频域参数高度对应并具有相同的强度响应性;瞬态性和周期性成分的s-ABR各主波不同潜伏期特性可能提示更多编码信息;言语在听性脑干水平的处理并无明显偏侧化现象。
关键词
言语声;强度;听性脑干反应;偏侧化
基金项目(Foundation):
国家自然科学基金项目(61172033);; 2014年广东省科技计划立项(411141963067);; 广东省医学科研基金(A2015074)联合资助
作者
符秋养;梁勇;邹岸;王涛;
参考文献

1 Akhoun I,Moulin A,Jeanvoine A,et al.Speech auditory brainstem response(speech ABR)characteristics depending on recording conditions and hearing status:an experimental parametric study[J].Journal of Neuroscience Methods,2008,175:196.

2 Vanvooren S,Poelmans H,Hofmann M,et al.Hemispheric asymmetry in auditory processing of speech envelope modulations in prereading children[J].The Journal of Neuroscience,2014,34:1523.

3 Sininger YS,Cone-Wesson B.Asymmetric cochlear processing mimics hemispheric specialization[J].Science,2004,305:1581.

4 Erika S,Nina K.Musical training heightens auditory brainstem function during sensitive periods in development[J].Frontiers in Psychology,2013,4:622.

5 符秋养,梁勇,苏园园,等.健康青年人言语诱发听性脑干反应的成分及特性[J].中华耳鼻咽喉头颈外科杂志,2009,44:900.

6 Kraus N,Nicol TG.Brainstem origins for cortical"what"and"where"path ways in the auditory system[J].Trends in Neurosciences,2005,28:176.

7 Johnson KL,Nicol TG,Kraus N.Brain stem response to speech:a biological marker of auditory processing[J].Ear and Hearing,2005,26:424.

8 Akhoun I,Galle′go S,Moulin A,et al.The temporal relationship between speech auditory brainstem responses and the acoustic pattern of the phoneme/ba/in normal-hearing adults[J].Clinical Neurophysiology,2008,119:922.

9 Rauschecker JP,Biao T.Mechanisms and streams for processing of"what"and"where"in auditory cortex[J].Proceeding of the National Academy of Sciences of the United States of America,2000,97:11800.

10 Rauschecker JP,Shannon RV.Sending sound to the brain[J].Science,2002,295:1025.

11 Wang J,Qin L,Chimoto S,et al.Response characteristics of primary auditory cortex neurons underlying perceptual asymmetry of ramped and damped sounds[J].Neuroscience,2014,256:309.

12 Phillips DP,Sark SA.Separate mechanisms control spike numbers and inter-spike intervals in transient responses of cat auditory cortex neurons[J].Hearing Research,1991,53:17.

13 Tan X,Wang X,Yang W,et al.First spike latency and spike count as functions of tone amplitude and frequency in the inferior colliculus of mice[J].Hearing Research,2008,235:90.

14 Kitzes L.Binaural interactions shape binaural response structures and frequency response functions in primary auditory cortex[J].Hearing Research,2008,238:68.

15 Heil P.First spike latency of auditory neurons revisited[J].Current Opinion in Neurobiology,2004,14:461.

16 VanRullen R,Guyonneau R,Thorpe SJ.Spike times make sense[J].Trends in Neurosciences,2005,28:1.

17 Johansson RS,Birznieks I.First spikes in ensembles of human tactile afferents code complex spatial fingertip events[J].Nature Neuroscience,2004,7:170.

18 Wiener MC,Richmond BJ.Decoding spike trains instant by instant using order statistics and the mixture-of-Poissons model[J].The Journal of Neuroscience,2003,23:2394.

19 Chandrasekaran B,Hornickel J,Skoe E,et al.Context-dependent encoding in the human auditory brainstem relates to hearing speech in noise:Implications for developmental dyslexia[J].Neuron,2009,64:311.

20 Hashimoto R,Homae F,Nakajima K,et al.Functional differentiation in the human auditory and language areas revealed by a dichotic listening task[J].Neuroimage,2000,12:147.

21 Itoh K,Miyazaki K,Nakada T.Ear advantage and consonance of dichotic pitch intervals in absolute-pitch possessors[J].Brain and Cognition,2003,53:464.

22 Wang Y,Jongman A,Sereno JA.Dichotic perception of Mandarin tones by Chinese and American listeners[J].Brain and Language,2001,78:332.

23 Westerhausen R,Hugdahl K.The corpus callosum in dichotic listening studies of hemispheric asymmetry:a review of clinical and experimental evidence[J].Neuroscience&Biobehavioral Reviews,2008,32:1044.

本文信息

PDF(260K)

本文作者相关文章

符秋养梁勇邹岸王涛