非线性动力学方法研究声门下压对离体狗喉声音质量的影响

The Voice Effects of Sub-glottal Pressure in Excised Canine Larynx using Nonlinear Dynamics Method

邬晓力;徐新林;郭永清;庄佩耘;李琳;张宇;蒋家琪;

1:厦门大学附属中山医院耳鼻咽喉-头颈外科

2:厦门大学海洋与地球学院

3:复旦大学附属眼耳鼻喉医院

摘要
目的探讨声门下压(sub-glottal pressure,SGP)变化与离体狗喉声音质量变化之间的关系及非线性动力学和扰动分析方法在区别发声信号中的作用。方法收集6只离体狗喉分别在SGP为2kPa和4kPa时的发声信号,分别采用非线性动力学方法和扰动分析方法进行分析,比较非线性动力学指标:相空间重构、关联维D2及扰动分析方法指标:频率微扰(jitter)、振幅微扰(shimmer)、基频(F0)、噪谐比(NHR)对SGP变化的敏感性。结果在SGP为4kPa时离体狗喉发声信号的相空间重构较SGP为2kPa时复杂,在SGP为4kPa时离体狗喉发声信号的D2和F0较SGP为2kPa时高,差异有统计学意义(P<0.05),在SGP为4kPa时离体狗喉发声信号的jitter、shimmer和NHR较SGP为2kPa时低,差异有统计学意义(P<0.05);60次声学信号中有21次因不能提取稳定频率无法使用扰动方法进行分析,其中,SGP为4kPa时16次,SGP为2kPa时5次,差异有统计学意义(P<0.05)。结论在SGP为4kPa时离体狗喉的声音质量较SGP为2kPa时更好;离体狗喉发声信号的不规则性与SGP大小有关;非线性动力学方法分析声学信号较扰动方法更具敏感性。
关键词
离体狗喉;声信号;非线性动力学方法;扰动方法;声门下压
基金项目(Foundation):
国家自然科学基金(81371080,NSF11174240);; 厦门市科技局社会科技研究面上项目(3502220124035)联合资助
作者
邬晓力;徐新林;郭永清;庄佩耘;李琳;张宇;蒋家琪;
参考文献

1 Zhang Y,Reynders WJ,Jiang JJ,et al.Determination of phonation instability pressure and phonation pressure range in excised larynges[J].Journal of Speech Language and Hearing Research,2007,50:611.

2 Hoffman MR,Rieves AL,Budde AJ,et al.Phonation instability flow in excised canine larynges[J].The Journal of Voice,2012,26:280.

3 Devine EE,Bulleit EE,Hoffman MR,et al.Aerodynamic and nonlinear dynamic acoustic analysis of tension asymmetry in excised canine larynges[J].Journal of Speech,Language and Hearing Research,2012,55:1 850.

4 Regner MF,Tao C,Ying D,et al.The effect of vocal fold adduction on the acoustic quality of phonation:ex vivo investigations[J].Journal of Voice,2012,26:698.

5 Alipour F,Finnegan EM,Scherer RC.Aerodynamic and acoustic effects of abrupt frequency changes in excised larynges[J].Journal of Speech,Language and Hearing Research,2009,52:465.

6 Alipour F,Jaiswal S,Finnegan E.Aerodynamic and acoustic effects of false vocal folds and epiglottis in excised larynx models[J].The Annals of Otology Rhinology and Laryngology,2007,116:135.

7 Alipour F,Scherer RC.On pressure-frequency relations in the excised larynx[J].The Journal of the Acoustical Society of America,2007,122:2 296.

8 Hoffman MR,Witt RE,Chapin WJ,et al.Multiparameter comparison of injection laryngoplasty,medialization laryngoplasty,and arytenoid adduction in an excised larynx model[J].The Laryngscope,2010,120:769.

9 Hoffman MR,Surender K,Chapin WJ,et al.Optimal arytenoid adduction based on quantitative real-time voice analysis[J].The Laryngoscope,2011,121:339.

10 Berry DA,Herzel H,Titze IR,et al.Bifurcations in excised larynx experiments[J].Journal of Voice,1996,10:129.

11 Vestroni F.Nonlinear dynamics and bifurcations of an axially moving beam[J].Journal of Vibration and Acuoustics,2000,122:21.

12 Titze IR.Workshop on acoustic voice analysis:Summary statement[M].Lowa City:National Center for Voice and Speech,1995.1~36.

13 Poon CS,Merrill CK.Decrease of cardiac chaos in congestive heart failure[J].Nature,1997,389:492.

14 Chan RW,Titze IR.Effect of postmortem changes and freezing on the viscoelastic properties of vocal fold tissues[J].Annals of Biomedical Engineering,2003,31:482.

15 Jiang JJ,Zhuang PY,Ford CN.Nonlinear dynamics of phonations in excised larynx experiments[J].Journal of the Acoustical Society of America,2003,114:2 198.

16 Titze IR,Liang H.Comparison of F0extraction methods for high-precision voice perturbation measurements[J].Journal of Speech,Language and Hearing Research,1993,36:1 120.

17 Packard NH,Crutchfield JP,Farmer JD,et al.Geometry from a time series[J].Physical Review Letters,1980,45:712.

18 Fraser AM,Swinney HL.Independent coordinates for strange attractors from mutual information[J].Physical Review,1986,33 (A):1 134.

19 Takens F.Detecting strange attractors in turbulence[J].Springer Lecture Notes Math,1980,898:336.

20 Grassberger P,Procaccia J.Measuring the strangeness of strange attractors[J].Physica D:Nonlinear Phenomena,1983,9:189.

21 Berke GS,Moore DM,Hantke DR.Laryngeal modeling:theoretical,in vitro,in vivo[J].The Laryngoscope,1987,97:871.

22 Garrett CG,Coleman JR,Hanson DG.Comparative histology and vibration of the vocal folds:implications for experimental studies in microlaryngeal surgery[J].The Laryngoscope,2000,110:814.

23 Tao C,Jiang JJ,Zhang Y.Simulation of vocal-fold impact pressures with a self-oscillation finite-element model[J].The Journal of the Acoustical Society of America,2006,119:3 987.

24 Marcelo OR,Jose CP.Aerodynamic study of three-dimensional larynx models using finite element methods[J].Journal of Sound and Vibration,2008,311:39.