基于fMRI的内源性注意下视听整合的脑网络研究

Study on Brain Network of Audiovisual Integration under Endogenous Attention Revealed by fMRI

管中天;燕明丽;林萌;王松建;张娟;王宁宇;张旭;李春林

1:首都医科大学生物医学工程学院

2:首都医科大学大数据精准医疗高精尖创新中心

3:首都医科大学临床生物力学应用基础研究北京市重点实验室

4:北京大学第一医院

摘要
目的 探讨内源性注意调控下视听整合的脑网络有效连接。方法 选择25名视觉、听觉正常且认知能力正常的青年人作为受试者(平均年龄24±2岁,均为右利手),基于Posner范式进行视听注意(VA)、视觉注意(Va)及听觉注意(Av)三种不同注意下的认知任务,应用功能磁共振(fMRI)成像技术采集脑影像数据,分析三种任务间显著性差异激活脑区;采用格兰杰因果分析确定差异性脑激活区间的有效连接。结果 三种任务中基础感觉皮层如枕下回(inferior occipital gyrus, IOG)、枕中回(middle occipital gyrus, MOG)、颞上回(superior temporal gyrus, STG)和舌回(lingual gyrus, LING),背侧额顶网络如中央前回(precentral gyrus, PreCG)、楔前叶(precuneus, PCUN)、辅助运动区(supplementary motor area, SMA)与顶下小叶(inferior parietal lobule, IPL)均被广泛激活,且格兰杰因果分析结果显示视听注意与视觉注意任务间存在六条显著差异连接(SMA.L→IOG.L,PCUN.R→IPL.L,STG.L→PreCG.R,MOG.L→MOG.R,IOG.L→PreCG.L,IOG.R→IPL.L);视听注意与听觉注意任务间存在三条显著差异连接(IPL.L→MOG.L,STG.L→PreCG.R,STG.L→LING.R)。结论 内源性注意调控下,额顶网络与基础感觉皮层间存在双向显著差异连接,揭示了视听整合过程依赖于额顶网络与基础感觉皮层间的前馈与反馈信息流的脑网络机制。

【Abstract] Objective To study the effective connection of audiovisual integrated brain network under the regulation of endogenous attention. Methods Twenty five young adults (average age 24±2 years old, all right-handed) with normal audiovisual and cognitive ability were selected as subjects. Audiovisual attention task, visual attention task and auditory attention task based on Posner paradigm were used and fMRI technology was applied to collect brain imaging data. Significant differences in activation of brain regions between three tasks were analyzed. Granger causality analysis was applied to identify effective connections between differentially activated brain regions. Results Basic sensory cortex such as inferior occipital gyrus (IOG) , middle occipital gyrus (MOG), superior temporal gyrus (STG), lingual gyrus (LING) and dorsal frontoparietal network such as precentral gyrus (PreCG),precuneus(PCUN), supplementary motor area(SMA),inferior parietal lobule (IPL) were all extensively activated in three tasks. The results of Granger causality analysis showed that there were six significant differential connections between audiovisual attention task and visual attention task(SMA. L→IOG.L, PCUN.R→IPL. L,STG.L→PreCG. R,MOG.L→MOG.R,IOG. L→PreCG.L, IOG. R→IPL. L) and three significant differential connections between audiovisual attention task and auditory attention task (IPL.L→MOG. L, STG.L→PreCG. R, STG. L→LING. R). Conclusion Two-way significant differential connections between the frontoparietal network and the basal sensory cortex were found under the regulation of endogenous attention, revealing the brain network mechanism that the process of audiovisual integration depends on the feedforward and feedback information flows between the frontoparietal network and the basal sensory cortex.


关键词
视听整合;功能磁共振成像;内源性注意;格兰杰因果分析
基金项目(Foundation):
国家自然科学基金(81771909、81900934、62171300)
作者
管中天;燕明丽;林萌;王松建;张娟;王宁宇;张旭;李春林
参考文献

1 Hirst RJ,Stacey JE,Cragg L,et al.The threshold for the McGurk effect in audio-visual noise decreases with development[J].Scientific Reports,2018,8(1):12372.

2 Plass J,Brang D.Multisensory stimuli shift perceptual priors to facilitate rapid behavior[J].Scientific Reports,2021,11(1):23052.

3 Zhou HY,Shi LJ,Yang HX,et al.Audiovisual temporal integration and rapid temporal recalibration in adolescents and adults:age-related changes and its correlation with autistic traits[J].Autism Research,2020,13(4):615-626.

4 Matusz PJ,Turoman N,Tivadar RI,et al.Brain and cognitive mechanisms of top-down attentional control in a multisensory world:benefits of electrical neuroimaging[J].Journal of Cognitive Neuroscience,2019,31(3):412-430.

5 Wikman P,Sahari E,Salmela V,et al.Breaking down the cocktail party:attentional modulation of cerebral audiovisual speech processing[J].Neuroimage,2021,224:117365.

6 林萌,王松建,李春林,等.空间注意在视听觉信息处理中的调控机制研究[J].听力学及言语疾病杂志,2021,29(3):256-261.

7 Bielczyk NZ,Uithol S,Van Mourik T,et al.Disentangling causal webs in the brain using functional magnetic resonance imaging:a review of current approaches[J].Network Neuroscience,2019,3(2):237-273.

8 Goffin C,Vogel SE,Slipenkyj M,et al.A comes before B,like 1 comes before 2.Is the parietal cortex sensitive to ordinal relationships in both numbers and letters?An fMRI-adaptation study[J].Human brain mapping,2020,41(6):1591-1610.

9 Chen F,Ke J,Qi R,et al.Increased inhibition of the amygdala by the mPFC may reflect a resilience factor in post-traumatic stress disorder:a resting-state fMRI granger causality analysis[J].Frontiers in Psychiatry,2018,9:516.

10 Ptak R,Schnider A,Fellrath J.The dorsal frontoparietal network:a core system for emulated action[J].Trends in Cognitive Sciences,2017,21(8):589-599.

11 Nurminen L,Merlin S,Bijanzadeh M,et al.Top-down feedback controls spatial summation and response amplitude in primate visual cortex[J].Nature Communications,2018,9(1):1-13.

12 Tang X,Wang X,Peng X,et al.Electrophysiological evidence of different neural processing between visual and audiovisual inhibition of return[J].Scientific Reports,2021,11(1):8056.

13 Quercia P,Pozzo T,Marino A,et al.Alteration in binocular fusion modifies audiovisual integration in children[J].Clinical Ophthalmology,2019,13:1137-1145.

14 Mueller A,Hong DS,Shepard S,et al.Linking ADHD to the neural circuitry of attention[J].Trends in Cognitive Sciences,2017,21(6):474-488.

15 Pineda-Pardo JA,Obeso I,Guida P,et al.Static magnetic field stimulation of the supplementary motor area modulates resting-state activity and motor behavior[J].Communications Biology,2019,2(1):397.

16 Porada DK,Regenbogen C,Freiherr J,et al.Trimodal processing of complex stimuli in inferior parietal cortex is modality-independent[J].Cortex,2021,139:198-210.

17 Park H,Ince RA,Schyns PG,et al.Representational interactions during audiovisual speech entrainment:redundancy in left posterior superior temporal gyrus and synergy in left motor cortex[J].PLoS biology,2018,16(8):e2006558.

18 Gayet S,Paffen CL,Van Der Stigchel S.Visual working memory storage recruits sensory processing areas[J].Trends in Cognitive Sciences,2018,22(3):189-190.

19 Limanowski J,Friston K.Attentional modulation of vision versus proprioception during action [J].Cerebral Cortex,2019,30(3):1637-1648.