光学相干层析成像技术在中耳内耳研究中的应用
张海裕;郑姝;倪广健
1:天津大学医学工程与转化医学研究院
2:天津大学精密仪器与光电子工程学院





1 Soko?owski J,Lachowska M,Bartoszewicz R,et al.Methodology for intraoperative laser Doppler vibrometry measurements of ossicular chain reconstruction[J].Clin Exp Otorhinolar,2016,9(2):98-103.
2 Khaleghi M,Guignard J,Furlong C,et al.Simultaneous full-field 3-D vibrometry of the human eardrum using spatial-bandwidth multiplexed holography[J].J Biomed Opt,2015,20(11):1-11.
3 Iyer JS,Batts SA,Chu KK,et al.Micro-optical coherence tomography of the mammalian cochlea[J].Sci Rep,2016,6(1):1-10.
4 Lieu D.Ultrasound physics and instrumentation for pathologists[J].Arch Pathol Lab Med,2010,134(10):1541-1556.
5 Lee J,Wijesinghe RE,Jeon D,et al.Clinical utility of intraoperative tympanomastoidectomy assessment using a surgical microscope integrated with an optical coherence tomography[J].Scientific Reports,2018,8(1):1-8.
6 Jeon D,Cho NH,Park K,et al.In vivo vibration measurement of middle ear structure using doppler optical coherence tomography:preliminary study[J].Clin Exp Otorhinolar,2018,12(1):5489-5502.
7 Lee HY,Raphael PD,Park J,et al.Noninvasive in vivo imaging reveals differences between tectorial membrane and basilar membrane traveling waves in the mouse cochlea[J].Proc Natl Acad Sci USA,2015,112(10):3128-3133.
8 Cooper NP,Vavakou A,van der Heijden M.Vibration hotspots reveal longitudinal funneling of sound-evoked motion in the mammalian cochlea[J].Nature Communications,2018,9(1):3054-3065.
9 Dewey JB,Applegate BE,Oghalai JS.Amplification and suppression of traveling waves along the mouse organ of Corti:evidence for spatial variation in the longitudinal coupling of outer hair cell-generated forces[J].J Neurosci,2019,39(10):1805-1816.
10 Jabeen T,Holt JC,Becker JR,et al.Interactions between passive and active vibrations in the organ of Corti in vitro[J].Biopys J,2020,119(2):314-325.
11 陆冬筱,房文汇,李玉瑶,等.光学相干层析成像技术原理及研究进展[J].中国光学,2020,13(5):919-935.
12 杨培,杨姗姗,丁志华,等.傅里叶域光学相干层析成像技术的研究进展[J].中国激光,2018,45(2):153-163.
13 Olson ES,Strimbu CE.Cochlear mechanics:new insights from vibrometry and optical coherence tomography[J].Current Opinion in Physiology,2020.DOI:10.1016/j.cophys.2020.08.022.
14 Kassani SH,Villiger M,Uribe-Patarroyo N,et al.Extended bandwidth wavelength swept laser source for high resolution optical frequency domain imaging[J].Opt Express,2017,25(7):8255-8266.
15 Lin NC,Fallah E,Strimbu CE,et al.Scanning optical coherence tomography probe for in vivo imaging and displacement measurements in the cochlea[J].Biomed Opt Express,2019,10(2):1032-1043.
16 Potsaid B,Gorczynska I,Srinivasan VJ,et al.Ultrahigh speed spectral/fourier domain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second[J].Opt Express,2008,16(19):15149-15169.
17 Wieser W,Biedermann BR,Klein T,et al.Multi-megahertz OCT:high quality 3D imaging at 20 million a-scans and 4.5 GVoxels per second[J].Opt Express,2010,18(14):14685-14704.
18 Bedard N,Shope T,Hoberman A,et al.Light field otoscope design for 3D in vivo imaging of the middle ear[J].Biomed Opt Express,2017,8(1):260-272.
19 Park J,Cheng JT,Ferguson D,et al.Investigation of middle ear anatomy and function with combined video otoscopy-phase sensitive OCT[J].Biomed Opt Express,2016,7(2):238-250.
20 Cai LL,Stomackin G,Perez NM,et al.Recovery from tympanic membrane perforation:effects on membrane thickness,auditory thresholds,and middle ear transmission[J].Hear Res,2019.DOI:10.1016/j.heares.2019.107813.
21 Pande P,Shelton RL,Monroy GL,et al.A mosaicking approach for in vivo thickness mapping of the human tympanic membrane using low coherence interferometry[J].JARO-j Assoc Res Oto,2016,17(5):403-416.
22 Oh SJ,Lee IW,Wang SG,et al.Extratympanic observation of middle and inner ear structures in rodents using optical coherence tomography[J].Clin Exp Otorhinolar,2020,13(2):106-122.
23 Hubler Z,Shemonski ND,Shelton R L,et al.Real-time automated thickness measurement of the in vivo human tympanic membrane using optical coherence tomography[J].Quant Imaging Med Surg,2015,5(1):69-77.
24 Kirsten L,Schindler M,Morgenstern J,et al.Endoscopic optical coherence tomography with wide field-of-view for the morphological and functional assessment of the human tympanic membrane[J].J Biomed Opt,2019,24(3):1-11.
25 Choi S,Sato K,Ota T,et al.Multifrequency-swept optical coherence microscopy for highspeed full-field tomographic vibrometry in biological tissues[J].Biomed Opt Express,2017,8(2):608-621.
26 Ramier A,Cheng JT,Ravicz ME,et al.Mapping the phase and amplitude of ossicular chain motion using sound-synchronous optical coherence vibrography[J].Biomed Opt Express,2018,9(11):5489-5502.
27 Park J,Carbajal EF,Chen X,et al.Phase-sensitive optical coherence tomography using an Vernier-tuned distributed Bragg reflector swept laser in the mouse middle ear[J].Opt Lett,2014,39(21):6233-6236.
28 Rosowski JJ,Ramier A,Cheng JT,et al.Optical coherence tomographic measurements of the sound-induced motion of the ossicular chain in chinchillas:additional modes of ossicular motion enhance the mechanical response of the chinchilla middle ear at higher frequencies[J].Hear Res,2020.DOI:10.1016/j.heares.2020.108056.
29 Jeon D,Kim JK,Jeon M,et al.Measurement of vibrating tympanic membrane in an in vivo mouse model using doppler optical coherence tomography[J].Journal of Imaging,2019,5(9):74-80.
30 Kim W,Kim S,Huang S,et al.Picometer scale vibrometry in the human middle ear using a surgical microscope based optical coherence tomography and vibrometry system[J].Biomed Opt Express,2019,10(9):4395-4410.
31 Kim S,Oghalai JS,Applegate BE.Noise and sensitivity in optical coherence tomography based vibrometry[J].Opt Express,2019,27(23):33332-33349.
32 Schilder AGM,Chonmaitree T,Cripps AW,et al.Otitis media[J].Nat Rev Dis Primers,2016,2:16063.DOI:10.1038/nrdp.2016.63.
33 Nguyen CT,Robinson SR,Jung W,et al.Investigation of bacterial biofilm in the human middle ear using optical coherence tomography and acoustic measurements[J].Hear Res,2013,301:193-200.DOI:10.1016/j.heares.2013.04.001.
34 Monroy GL,Shelton RL,Nolan RM,et al.Noninvasive depth-resolved optical measurements of the tympanic membrane and middle ear for differentiating otitis media[J].Laryngoscope,2015,125(8):E276-E282.
35 Won J,Monroy GL,Huang PC,et al.Assessing the effect of middle ear effusions on wideband acoustic immittance using optical coherence tomography[J].Ear and Hearing,2020,41(4):811-824.
36 Monroy GL,Pande P,Nolan RM,et al.Noninvasive in vivo optical coherence tomography tracking of chronic otitis media in pediatric subjects after surgical intervention[J].J Biomed Opt,2017,22(12):1-11.
37 MacDougall D,Morrison L,Morrison C,et al.Optical coherence tomography Doppler vibrometry measurement of stapes vibration in patients with stapes fixation and normal controls[J].Otol Neurotol,2019,40(4):E349-E355.
38 Sundvall PD,Papachristodoulou CE,Nordeman L.Diagnostic methods for acute otitis media in 1 to 12 year old children:a cross sectional study in primary health care[J].Bmc Family Practice,2019,20(1):1-8.
39 Lee DH.How to improve the accuracy of diagnosing otitis media with effusion in a pediatric population[J].Int J Pediatr Otorhi,2010,74(2):151-153.
40 Erkkola-Anttinen N,Laine MK,Tahtinen PA,et al.Parental role in the diagnostics of otitis media:can layman parents use spectral gradient acoustic reflectometry reliably[J]?Int J Pediatr Otorhi,2015,79(9):1516-1521.
41 Laine MK,Tahtinen PA,Ruuskanen O,et al.Can trained nurses exclude acute otitis media with tympanometry or acoustic reflectometry in symptomatic children[J]?Scand J Prim Health,2015,33(4):298-304.
42 谢立,刘爱国,Tejvansh Shenoy Imrit,等.高分辨率CT在耳硬化症诊断中的应用价值[J].听力学及言语疾病杂志,2020,28(6):644-648.
43 Lee HY,Raphael PD,Xia A,et al.Two-dimensional cochlear micromechanics measured in vivo demonstrate radial tuning within the mouse organ of Corti[J].J Neurosci,2016,36(31):8160-8173.
44 Recio-Spinoso A,Oghalai JS.Mechanical tuning and amplification within the apex of the guinea pig cochlea[J].J Physiol-london,2017,595(13):4549-4561.
45 Warren RL,Ramamoorthy S,Ciganovic N,et al.Minimal basilar membrane motion in low-frequency hearing[J].Proc Natl Acad Sci USA,2016,113(30):E4304-E4310.
46 He W,Kemp D,Ren T.Timing of the reticular lamina and basilar membrane vibration in living gerbil cochleae[J].2018,7(e37625):1-17.
47 Romito M,Pu Y,Stankovic KM,et al.Imaging hair cells through laser-ablated cochlear bone[J].Biomed Opt Express,2019,10(11):5974-5988.
48 Kim W,Kim S,Oghalai JS,et al.Endoscopic optical coherence tomography enables morphological and subnanometer vibratory imaging of the porcine cochlea through the round window[J].Opt Lett,2018,43(9):1966-1969.