锥形束CT评价人工耳蜗植入的电极深度和位置

Cochlear Electrode Insertion Depth Angle and Scalar Localization Determined by Cone Beam CT

孟娟;王涛;张帆;秦兆冰

1:郑州大学第一附属医院耳科

2:郑州大学第一附属医院口腔科

摘要
目的 分析人工耳蜗植入后电极植入深度、位置与耳蜗大小、盘旋方式的关系,探讨植入后电极深度的影响因素和电极移位的原因。方法 选取植入CI24RE(CA)弯电极30例和SONATA ti100 Standard直电极人工耳蜗装置41例,利用锥形束CT测量术后电极植入长度、植入深度角、电极在耳蜗内的位置,分析上述指标与术前CT评估的耳蜗大小、倾斜角度的关系。结果 (1)术后电极植入深度角和长度均存在较大的个体差异。直电极组平均植入深度角为702±53度,平均植入长度为30.02±1.29 mm;弯电极组平均植入深度角为441±45度,平均植入长度为18.4±1.0 mm,两组间差异有统计学意义(P<0.001)。(2)电极植入深度角与耳蜗底回的长径和宽径均呈负相关:直电极组r=-0.768(P<0.001)、r=-0.678(P<0.001),弯电极组r=-0.467(P=0.008)、r=-0.471(P=0.008)。电极植入长度与植入深度角呈正相关:直电极组r=0.578(P<0.001),弯电极组r=0.748(P<0.001)。(3)术后电极移位6例,均为弯电极且位于耳蜗180度位置。弯电极组中电极移位者与未移位者耳蜗底回倾斜角以及第一回和第二回之间的夹角差异有统计学意义(10.28度vs 8.75度,P=0.006;15.23度vs 14.00度,P=0.033)。结论 人工耳蜗植入术后电极植入长度和深度角存在较大的个体差异,与耳蜗大小密切相关;耳蜗盘旋方式不同是引起电极移位的原因之一。
关键词
人工耳蜗植入;锥形束CT;植入长度;植入深度角;电极位置
基金项目(Foundation):
河南省医学科技攻关计划项目(2018020113)
作者
孟娟;王涛;张帆;秦兆冰
参考文献

1 Meng J,Li S,Zhang F,et al.Cochlear size and shape variability and implications in cochlear implantation surgery[J].Otology & Neurotology,2016,37(9):1307-1313.

2 Zahara D,Dewi RD,Aboet A,et al.Variations in cochlear size of cochlear implant candidates[J].International Archives of Otorhinolaryngology,2019,23(2):184-190.

3 Heutink F,Verbist BM,Mens LHM,et al.The evaluation of a slim perimodiolar electrode:surgical technique in relation to intracochlear position and cochlear implant outcomes[J].European Archives of Oto-Rhino-Laryngology,2020,277(2):343-350.

4 Iso-Mustaj?rvi M,Sipari S,L?pp?nen H,et al.Preservation of residual hearing after cochlear implant surgery with slim modiolar electrode[J].European Archives of Oto-Rhino-Laryngology,2020,277(2):367-375.

5 Canfarotta MW,O'Connell BP,Giardina CK,et al.Relationship between electrocochleography,angular insertion depth,and cochlear implant speech perception outcomes[J].Ear and Hearing,2021,42(4):941-948.

6 范新泰,王娜,侯凌霄,等.锥形束 CT 对人工耳蜗植入术后电极位置的评估[J].中华耳鼻咽喉头颈外科杂志,2019,54(8):566-570.

7 宋跃帅,龚树生.锥形束CT评估内耳畸形患者人工耳蜗植入术后电极形态的研究[J].听力学及言语疾病杂志,2019,27(3):306-308.

8 宋跃帅,龚树生.应用锥形束CT评估人工耳蜗植入后电极形态的研究[J].临床耳鼻咽喉头颈外科杂志,2018,32(18):1371-1373.

9 Verbist BM,Skinner MW,Cohen LT,et al.Consensus panel on a cochlear coordinate system applicable in histological,physiological and radiological studies of the human cochlea[J].Otology & Neurotology,2010,31(5):722-730.

10 Wardrop P,Whinney D,Rebscher SJ,et al.A temporal bone study of insertion trauma and intracochlear position of cochlear implant electrodes.I:Comparison of Nucleus banded and Nucleus ContourTM electrodes[J].Hearing Research,2005,203(1-2):54-67.

11 Hanafi MG,Saki N,Bahmani S.Investigating the effect of cochlear size in insertion of electrode depth in patients with cochlear implantation evaluated by CT-scan[J].International Journal of Pediatrics,2019,7(4):9207-9213.

12 Wanna GB,Noble JH,Carlson ML,et al.Impact of electrode design and surgical approach on scalar location and cochlear implant outcomes[J].The Laryngoscope,2014,124(S6):S1-S7.

13 Lecerf P,Bakhos D,Cottier JP,et al.Midmodiolar reconstruction as a valuable tool to determine the exact position of the cochlear implant electrode array[J].Otology & Neurotology,2011,32(7):1075-1081.

14 Schuman TA,Noble JH,Wright CG,et al.Anatomic verification of a novel method for precise intrascalar localization of cochlear implant electrodes in adult temporal bones using clinically available computed tomography[J].The Laryngoscope,2010,120(11):2277-2283.

15 Biedron S,Prescher A,Ilgner J,et al.The internal dimensions of the cochlear scalae with special reference to cochlear electrode insertion trauma[J].Otology & Neurotology,2010,31(5):731-737.

16 Rajan GP,Kontorinis G,Kuthubutheen J.The effects of insertion speed on inner ear function during cochlear implantation:a comparison study[J].Audiology and Neurotology,2013,18(1):17-22.

17 Miroir M,Nguyen Y,Kazmitcheff G,et al.Friction force measurement during cochlear implant insertion:application to a force-controlled insertion tool design[J].Otology & Neurotology,2012,33(6):1092-1100.