老年性聋发病机制研究进展

Research Progress on the Etiopathogenesis of Presbycusis

王松;韩贺舟;马秀岚

1:中国医科大学附属盛京医院耳鼻咽喉头颈外科

摘要
老年性聋是以隐匿性、缓慢进行性双侧感音神经性听力下降为特征的疾病,其发生和发展是一个多因素作用的过程,每种因素的作用在个体间差异较大。针对老年性聋的发病机制,目前已有一定研究,主要可分为离子通道异常、耳蜗突触病变、活性氧自由基、激素作用、线粒体异常、遗传因素等诸多方面,本文对近年来老年性聋发病机制进行总结。
关键词
老年性聋;年龄相关性听力损失;发病机制
基金项目(Foundation):
作者
王松;韩贺舟;马秀岚
参考文献

1 Bazard P,Frisina RD,Acosta AA,et al.Roles of key ion channels and transport proteins in age-related hearing loss[J].Int J Mol Sci,2021,22(11):6158.

2 Koumangoye R,Bastarache L,Delpire E.NKCC1:newly found as a human disease-causing ion transporter[J].Function,2021,2(1):zqaa028.

3 Mutai H,Wasano K,Momozawa Y,et al.Variants encoding a restricted carboxy-terminal domain of SLC12A2 cause hereditary hearing loss in humans[J].PLoS Genet,2020,16(4):e1008643.

4 Halonen J,Hinton AS,Frisina RD,et al.Long-term treatment with aldosterone slows the progression of age-related hearing loss[J].Hear Res,2016,336:63-71.

5 Clausen MV,Hilbers F,Poulsen H.The structure and function of the Na,K-ATPase isoforms in health and disease[J].Front Physiol,2017,8:371.

6 Ding B,Walton JP,Zhu X,et al.Age-related changes in Na,K-ATPase expression,subunit isoform selection and assembly in the stria vascularis lateral wall of mouse cochlea[J].Hear Res,2018,367:59-73.

7 Kurbel S,Borzan V,Golem H,et al.Cochlear potential difference between endolymph fluid and the hair cell's interior:a retold interpretation based on the Goldman equation[J].Med Glas,2017,14(1):8-15.

8 Liu Y,Chu HQ,Sun YB,et al.Expression of α2-Na/K-ATPase in C57BL/6J mice inner ear and its relationship with age-related hearing loss[J].Curr Med Sci,2021,41(1):153-157.

9 Carignano C,Barila EP,Rías EI,et al.Inner hair cell and neuron degeneration contribute to hearing loss in a DFNA2-like mouse model[J].Neuroscience,2019,410:202-216.

10 Jung J,Lin H,Koh YI,et al.Rare KCNQ4 variants found in public databases underlie impaired channel activity that may contribute to hearing impairment[J].Exp Mol Med,2019,51(8):1-12.

11 Parthasarathy A,Kujawa SG.Synaptopathy in the aging cochlea:characterizing early-neural deficits in auditory temporal envelope processing[J].J Neurosci,2018,38(32):7108-7119.

12 Wu PZ,Liberman LD,Bennett K,et al.Primary neural degeneration in the human cochlea:evidence for hidden hearing loss in the aging ear[J].Neuroscience,2019,407:8-20.

13 Liberman MC,Kujawa SG.Cochlear synaptopathy in acquired sensorineural hearing loss:manifestations and mechanisms[J].Hear Res,2017,349:138-147.

14 Du ZD,Han SG,Qu TF,et al.Age-related insult of cochlear ribbon synapses:an early-onset contributor to D-galactose-induced aging in mice[J].Neurochem Int,2020,133:104649.

15 Wei M,Wang W,Liu Y,et al.Protection of cochlear ribbon synapses and prevention of hidden hearing loss[J].Neural Plast,2020,2020:8815990.

16 Heeringa AN,K?ppl C.The aging cochlea:towards unraveling the functional contributions of strial dysfunction and synaptopathy[J].Hear Res,2019,376:111-124.

17 Liberman MC,Liberman LD,Maison SF.Chronic conductive hearing loss leads to cochlear degeneration[J].PLoS One,2015,10(11):e0142341.

18 Johannesen PT,Buzo BC,Lopez-Poveda EA.Evidence for age-related cochlear synaptopathy in humans unconnected to speech-in-noise intelligibility deficits[J].Hear Res,2019,374:35-48.

19 Shi L,Chang Y,Li X,et al.Coding deficits in noise-induced hidden hearing loss may stem from incomplete repair of ribbon synapses in the cochlea[J].Front Neurosci,2016,10:231.

20 Xiong H,Lai L,Ye Y,et al.Glucose protects cochlear hair cells against oxidative stress and attenuates noise-induced hearing loss in mice[J].Neurosci Bull,2021,37(5):657-668.

21 Liu S,Xu T,Wu X,et al.Pomegranate peel extract attenuates D-galactose-induced oxidative stress and hearing loss by regulating PNUTS/PP1 activity in the mouse cochlea[J].Neurobiol Aging,2017,59:30-40.

22 Tavanai E,Mohammadkhani G.Role of antioxidants in prevention of age-related hearing loss:a review of literature[J].Eur Arch Otorhinolaryngol,2017,274(4):1821-1834.

23 Guo B,Guo Q,Wang Z,et al.D-Galactose-induced oxidative stress and mitochondrial dysfunction in the cochlear basilar membrane:an in vitro aging model[J].Biogerontology,2020,21(3):311-323.

24 Fetoni AR,Zorzi V,Paciello F,et al.Cx26 partial loss causes accelerated presbycusis by redox imbalance and dysregulation of Nfr2 pathway[J].Redox Bio,2018,19:301-317.

25 Fu X,Sun X,Zhang L,et al.Tuberous sclerosis complex-mediated mTORC1 overactivation promotes age-related hearing loss[J].J Clin Invest,2018,128(11):4938-4955.

26 Li Y,Zhao X,Hu Y,et al.Age-associated decline in Nrf2 signaling and associated mtDNA damage may be involved in the degeneration of the auditory cortex:implications for central presbycusis[J].Int J Mol Med,2018,42(6):3371-3385.

27 Qi F,Zhang R,Chen J,et al.Down-regulation of Cav1.3 in auditory pathway promotes age-related hearing loss by enhancing calcium-mediated oxidative stress in male mice[J].Aging,2019,11(16):6490-6502.

28 White K,Kim MJ,Han C,et al.Loss of IDH2 accelerates age-related hearing loss in male mice[J].Sci Rep,2018,8(1):5039.

29 Falah M,Farhadi M,Kamrava SK,et al.Association of genetic variations in the mitochondrial DNA control region with presbycusis[J].Clin Interv Aging,2017,12:459-465.

30 Huang YH,Chen CM,Lee YS,et al.Detection of mitochondrial DNA with 4977 bp deletion in leukocytes of patients with ischemic stroke[J].PLoS One,2018,13(2):e0193175.

31 Salehi Z,Haghighi A,Haghighi,et al.Mitochondrial DNA deletion Δ4977 in peptic ulcer disease[J].Mol Biol (Mosk),2017,51(1):37-41.

32 Du ZD,He L,Tu C,et al.Mitochondrial DNA 3 860-bp deletion increases with aging in the auditory nervous system of C57BL/6J mice[J].ORL J Otorhinolaryngol Relat Spec,2019,81(2-3):92-100.

33 Han B,Zhou T,Tu Y,et al.Correlation between mitochondrial DNA 4977bp deletion and presbycusis[J].Medicine,2019,98:27(e16302).

34 Nolan LS.Age-related hearing loss:why we need to think about sex as a biological variable[J].J Neurosci Res,2020,98(9):1705-1720.

35 Hoffman HJ,Dobie RA,Losonczy KG,et al.Declining prevalence of hearing loss in US adults aged 20 to 69 years[J].JAMA Otolaryngol Head Neck Surg,2017,143(3):274-285.

36 Curhan SG,Eliassen AH,Eavey RD,et al.Menopause and postmenopausal hormone therapy and risk of hearing loss[J].Menopause,2017,24(9):1049-1056.

37 Williamson TT,Ding B,Zhu X,et al.Hormone replacement therapy attenuates hearing loss:mechanisms involving estrogen and the IGF-1 pathway[J].Aging Cell,2019,18(3):e12939.

38 Azcoitia I,Barreto GE,Garcia-Segura LM.Molecular mechanisms and cellular events involved in the neuroprotective actions of estradiol.Analysis of sex differences[J].Front Neuroendocrinol,2019,55:100787.

39 Fischer N,Chacko LJ,Glueckert R,et al.Age-dependent changes in the cochlea[J].Gerontology,2020,66(1):33-39.

40 Moser T.Molecular understanding of hearing—how does this matter to the hearing impaired[J].Laryngorhinootologie,2018,97(S01):S214-S230.

41 Wiwatpanit T,Remis NN,Ahmad A,et al.Codeficiency of lysosomal mucolipins 3 and 1 in cochlear hair cells diminishes outer hair cell longevity and accelerates age-related hearing loss[J].J Neurosci,2018,38(13):3177-3189.

42 Karimian M,Behjati M,Barati E,et al.CYP1A1 and GSTs common gene variations and presbycusis risk:a genetic association analysis and a bioinformatics approach[J].Environ Sci Pollut Res Int,2020,27(34):42600-42610.

43 Xu J,Zheng J,Shen W,et al.Elevated SLC26A4 gene promoter methylation is associated with the risk of presbycusis in men[J].Mol Med Rep,2017,16(1):347-352.

44 Stazio MD,Morgan A,Brumat M,et al.New age-related hearing loss candidate genes in humans:an ongoing challenge[J].Gene,2020,742:144561.

本文信息

PDF(742K)

本文作者相关文章

王松韩贺舟马秀岚