跨阻矩阵测量在人工耳蜗植入术中的应用研究进展

Application of Transimpedance Matrix Measurement in Cochlear Implantation

薛书锦;魏兴梅;孔颖;李永新

1:首都医科大学附属北京同仁医院耳鼻咽喉科

摘要
人工耳蜗植入(CI)后电极阵列产生电刺激时,耳蜗内电流电压分布情况可通过电极记录并体现为阻抗或跨阻(impedance/transimpedance)。跨阻矩阵(transimpedance matrix, TIM)测量是利用人工耳蜗遥测功能的一种客观测量工具,具有操作简便、数据处理快捷、结果准确的特点,近年来在人工耳蜗植入术中应用已有报道,并在术中电极位置的评估、术后心理物理响度及神经兴奋扩散的测量等方面展示出相应的应用潜力。本文将介绍跨阻矩阵测量的原理与方法,并回顾跨阻矩阵测量在人工耳蜗植入领域应用的主要研究进展。
关键词
人工耳蜗植入;跨阻矩阵;人工耳蜗遥测;电场成像
基金项目(Foundation):
国家自然科学基金(81670923);; 北京市自然科学基金(7212015)
作者
薛书锦;魏兴梅;孔颖;李永新
参考文献

[1]Klabbers TM,Huinck WJ,Heutink F,et al.Transimpedance matrix (TIM) measurement for the detection of intraoperative electrode tip foldover using the slim modiolar electrode:a proof of concept study[J].Otol Neurotol,2021,42(2):e124-e129.

[2]Lella F,Marco DD ,Fernández F,et al.In vivo real-time remote cochlear implant capacitive impedance measurements:a glimpse into the implanted inner ear[J].Otol Neurotol,2019,40(5):s18-s22.

[3]Swaddiwudhipong N,Chen J,Landry TG,et al.Investigating the electrical properties of different cochlear implants[J].Otology & Neurotology,2020.DOI:10.1097/MAO.0000000000002861.

[4]Grolman W,Maat A,Verdam F,et al.Spread of excitation measurements for the detection of electrode array foldovers:a prospective study comparing 3-dimensional rotational x-ray and intraoperative spread of excitation measurements[J].Otol Neurotol,2009,30:27-33.

[5]Aschendorff A,Briggs R,Brademann G,et al.Clinical investigation of the nucleus slim modiolar electrode[J].Audio Neurotol,2017,22:169-79.

[6]Heutink F,Verbist BM,Mens LHM,et al.The evaluation of a slim perimodiolar electrode:surgical technique in relation to intracochlear position and cochlear implant outcomes[J].Eur Arch Otorhinolaryngol,2019,277:343-50.

[7]De Rijk SR,Tam YC,Carlyon RP,et al.Detection of extracochlear electrodes in cochlear implants with electric field imaging/transimpedance measurements:a human cadaver study[J].Ear Hear,2020,41(5):1196-1207.

[8]Vanpoucke FJ,Boermans PP,Frijns JH.Assessing the placement of a cochlear electrode array by multidimensional scaling[J].IEEE Trans Biomed Eng,2012,59(2):307-310.

[9]Zuniga MG,Rivas A,Hedley-Williams A,et al.Tip fold-over in cochlear implantation:case series[J],Otol Neurotol,2017,38(2):199-206.

[10]Tan CT,Svirsky M,Anwar A,et al.Real-time measurement of electrode impedance during intracochlear electrode insertion:real-time intracochlear electrode impedance[J].Laryngoscope,2013,123(4):1028-1032.

[11]Giardina CK,Krause ES,Koka K,et al.Impedance measures during in vitro cochlear implantation predict array positioning[J].IEEE Trans Biomed Eng,2018,65(2):327-335.

[12]Aebischer P,Meyer S,Caversaccio M,et al.Intraoperative impedance-based estimation of cochlear implant electrode array insertion depth[J].IEEE Trans Biomed Eng,2021,68(2):545-555.

[13]Berenstein CK,Vanpoucke FJ,Mulder J,et al.Electrical field imaging as a means to predict the loudness of monopolar and tripolar stimuli in cochlear implant patients[J].Hear Res,2010,270(1-2):28-38.

[14]de Jong MAM,Briaire JJ,Frijns JHM.Dynamic current focusing:a novel approach to loudness coding in cochlear implants[J].Ear Hear,2019,40(1):34-44.

[15]van den Honert C,Kelsall DC.Focused intracochlear electric stimulation with phased array channels[J].J Acoust Soc Am 2007,121(6):3703-3716.

[16]Hughes ML,Stille LJ.Psychophysical and physiological measures of electrical-field interaction in cochlear implants[J].J Acoust Soc Am,2009,125(1):247-260.

[17]Stickney GS,Loizou PC,Mishra LN,et al.Effects of electrode design and configuration on channel interactions[J].Hear Res,2006,211(1-2):33-45.

[18]Crew JD,Galvin JJ.Channel interaction limits melodic pitch perception in simulated cochlear implants[J].J Acoust Soc Am,2012,132:429-435.

[19]S?derqvist S,Lamminmki S,Aarnisalo A,et al.Intraoperative transimpedance and spread of excitation profile correlations with a lateral-wall cochlear implant electrode array[J].Hear Res,2021,405(5):108235.

[20]Durisin M,Büchner A,Lesinski-Schiedat A,et al.Cochlear implantation in children with bacterial meningitic deafness:the influence of the degree of ossification and obliteration on impedance and charge of the implant[J].Cochlear Implants Int,2015,16:147-158.

[21]Wilk M,Hessler R,Mugridge K,et al.Impedance changes and fibrous tissue growth after cochlear implantation are correlated and can be reduced using a dexamethasone eluting electrode[J].PLoS One,2016,11(2):e0147552.DOI:10.1371/journal.pone.0147552.

[22]Victor H,Andreas B,Stefan S,et al.Cochlear implantation in children with meningitis related deafness:the influence of electrode impedance and implant charge on auditory performance—a case control study[J].Int J Pediatr Otorhinolaryngol,2018,113:102-109.

[23]Cosentino S,Gaudrain E,Deeks JM ,et al.Multistage nonlinear optimization to recover neural activation patterns from evoked compound action potentials of cochlear implant users[J].IEEE Trans on Biomed Eng,2016,63(4):833-840.