fNIRS技术用于人工耳蜗植入领域的研究进展

The Research Progress of Functional Near-infrared Spectroscopy (fNIRS) Technology in Cochlear Implanting

张龙龙;陈兵

1:复旦大学附属眼耳鼻喉科医院耳鼻咽喉科

2:国家卫健委听觉医学重点实验室

摘要
人工耳蜗技术的发展对听力障碍患者的治疗带来了积极影响,但是人工耳蜗植入术后患者的听觉言语感知能力参差不齐。鉴于评估术后患者听觉言语康复效果的重要性,一种客观准确的评估方法至关重要。本文简要介绍了人工耳蜗植入术后评估康复效果传统方法的优势和局限性,进一步探讨了功能性近红外光学脑成像(functional near-infrared spectroscopy, fNIRS)的原理、优势和局限性及其在人工耳蜗植入术后患者中的应用,为今后人工耳蜗植入患者的评估和康复提供新的参考。
关键词
人工耳蜗植入;言语康复;评估方法;功能性近红外光学脑成像
基金项目(Foundation):
国家自然科学基金(82071048、81870726)
作者
张龙龙;陈兵
参考文献

1 Carlson ML.Cochlear implantation in adults[J].N Engl J Med,2020,382(16):1531-1542.

2 Weichbold V,Tsiakpini L,Coninx F,et al.Development of a parent questionnaire for assessment of auditory behaviour of infants up to two years of age[J].Laryngo Rhino Otol,2005,84(5):328-334.

3 Ching TY,Hill M.The parents' evaluation of aural/oral performance of children (PEACH) scale:normative data[J].J Am Acad Audiol,2007,18(3):220-235.

4 Eisenberg LS,Johnson KC,Martinez AS,et al.Speech recognition at 1-year follow-up in the childhood development after cochlear implantation study:methods and preliminary findings[J].Audiol Neurootol,2006,11(4):259-268.

5 毛弈韬,伍伟景,谢鼎华.人工耳蜗植入者康复成效评估方法的发展[J].听力学及言语疾病杂志,2013,21(2):178-183.

6 崔婧,王斌全,于文永.人工耳蜗植入患者听觉言语康复疗效评估及影响因素[J].中华耳科学杂志,2017,15(1):117-121.

7 原皞,张华,梁巍,等.听障婴幼儿听觉干预后短期听觉语言能力评估[J].中华耳科学杂志,2015,13(4):598-603.

8 鞠新翠,王宁宇.睡眠状态下失匹配负波的产生和意义[J].听力学及言语疾病杂志,2009,17(6):600-603.

9 Majdani O,Leinung M,Rau T,et al.Demagnetization of cochlear implants and temperature changes in 3.0T MRI environment[J].Otolaryngol Head Neck Surg,2008,139(6):833-839.

10 Bandettini PA.What's new in neuroimaging methods[J]?Ann N Y Acad Sci,2009,1156:260-293.

11 Saliba J,Bortfeld H,Levitin DJ,et al.Functional near-infrared spectroscopy for neuroimaging in cochlear implant recipients[J].Hear Res,2016,338:64-75.

12 Zhang LL,Zhong YQ,Sun JW,et al.Deficit of long-term memory traces for words in children with cochlear implants[J].Clin Neurophysiol,2020,131(6):1323-1331.

13 BinKhamis G,Perugia E,O'Driscoll M,et al.Speech-ABRs in cochlear implant recipients:feasibility study[J].Int J Audiol,2019,58(10):678-684.

14 Pinti P,Tachtsidis I,Hamilton A,et al.The present and future use of functional near-infrared spectroscopy (fNIRS) for cognitive neuroscience[J].Ann N Y Acad Sci,2020,1464(1):5-29.

15 Quaresima V,Bisconti S,Ferrari M.A brief review on the use of functional near-infrared spectroscopy (fNIRS) for language imaging studies in human newborns and adults[J].Brain Lang,2012,121(2):79-89.

16 刘昊天,刘玉和.近红外光学脑成像技术应用于人工耳蜗植入者中枢可塑性研究的进展[J].听力学及言语疾病杂志,2021,29(5):579-582.

17 Harrison SC,Lawrence R,Hoare DJ,et al.Use of functional near-infrared spectroscopy to predict and measure cochlear implant outcomes:a scoping review[J].Brain Sci,2021,11(11):1439.

18 Zhang F,Cheong D,Khan AF,et al.Correcting physiological noise in whole-head functional near-infrared spectroscopy[J].J Neurosci Methods,2021,360:109262.

19 Fukui Y,Ajichi Y,Okada E.Monte carlo prediction of near-infrared light propagation in realistic adult and neonatal head models[J].Appl Opt,2003,42(16):2881-2887.

20 Pinti P,Scholkmann F,Hamilton A,et al.Current status and issues regarding pre-processing of fnirs neuroimaging data:an investigation of diverse signal filtering methods within a general linear model framework[J].Front Hum Neurosci,2018,12:505.

21 Cui X,Bray S,Bryant DM,et al.A quantitative comparison of NIRS and fMRI across multiple cognitive tasks[J].Neuroimage,2011,54(4):2808-2821.

22 Sevy AB,Bortfeld H,Huppert TJ,et al.Neuroimaging with near-infrared spectroscopy demonstrates speech-evoked activity in the auditory cortex of deaf children following cochlear implantation[J].Hear Res,2010,270(1-2):39-47.

23 Pollonini L,Olds C,Abaya H,et al.Auditory cortex activation to natural speech and simulated cochlear implant speech measured with functional near-infrared spectroscopy[J].Hear Res,2014,309:84-93.

24 Bisconti S,Shulkin M,Hu X,et al.Functional near-infrared spectroscopy brain imaging investigation of phonological awareness and passage comprehension abilities in adult recipients of cochlear implants[J].J Speech Lang Hear Res,2016,59(2):239-253.

25 van de Rijt LP,van Opstal AJ,Mylanus EA,et al.Temporal cortex activation to audiovisual speech in normal-hearing and cochlear implant users measured with functional near-infrared spectroscopy[J].Front Hum Neurosci,2016,10:48.

26 Olds C,Pollonini L,Abaya H,et al.Cortical activation patterns correlate with speech understanding after cochlear implantation[J].Ear Hear,2016,37(3):e160-72.

27 McKay CM,Shah A,Seghouane AK,et al.Connectivity in language areas of the brain in cochlear implant users as revealed by fNIRS[J].Adv Exp Med Biol,2016,894:327-335.

28 Dewey RS,Hartley DEH.Cortical cross-modal plasticity following deafness measured using functional near-infrared spectroscopy[J].Hearing Research,2015,325:55-63.

29 Zhou X,Seghouane AK,Shah A,et al.Cortical speech processing in postlingually deaf adult cochlear implant users,as revealed by functional near-infrared spectroscopy[J].Trends Hear,2018,22:2331216518786850.

30 Chen LC,Puschmann S,Debener S.Increased cross-modal functional connectivity in cochlear implant users[J].Sci Rep,2017,7(1):10043.

31 Mushtaq F,Wiggins IM,Kitterick PT,et al.The benefit of cross-modal reorganization on speech perception in pediatric cochlear implant recipients revealed using functional near-infrared spectroscopy[J].Front Hum Neurosci,2020,14:308.

32 Wang Y,Liu L,Zhang Y,et al.The neural processing of vocal emotion after hearing reconstruction in prelingual deaf children:a functional near-infrared spectroscopy brain imaging study[J].Front Neurosci,2021,15:705741.

33 Anderson CA,Wiggins IM,Kitterick PT,et al.Pre-operative brain imaging using functional near-infrared spectroscopy helps predict cochlear implant outcome in deaf adults[J].J Assoc Res Otolaryngol,2019,20(5):511-528.