机器学习在人工耳蜗植入康复效果预测中的应用
Application of machine learning in prediction of rehabilitation effect after cochlear implantation
赖恺瀛;刘佳浩;左笑怡;梁茂金;王穗苹
1:广州市教育研究院
2:华南师范大学心理学院
3:中山大学孙逸仙纪念医院耳鼻喉科
4:“儿童青少年阅读与发展”教育部哲学社会科学实验室(华南师范大学)





[1] BOISVERT I,REIS M,AU A,et al.Cochlear implantation outcomes in adults:a scoping review[J].PLoS One,2020,15(5):e0232421.
[2] 曹永茂,陶泽璋,毛宗福,等.建立人工耳蜗植入后目标因素评估体系的研究[J].中华耳科学杂志,2010,8(4):363-367.
[3] T?U?AN A M,IONESCU B,SANTARNECCHI E.Artificial intelligence in neurodegenerative diseases:a review of available tools with a focus on machine learning techniques[J].Artif Intell Med,2021,117:102081.
[4] DIOGO V S,FERREIRA H A,PRATA D.Early diagnosis of Alzheimer's disease using machine learning:a multi-diagnostic,generalizable approach[J].Alzheimer's Res Ther,2022,14(1):1-22.
[5] ESTEVA A,KUPREL B,NOVOA R A,et al.Dermatologist-level classification of skin cancer with deep neural networks[J].Nature,2017,542(7639):115-118.
[6] MYSZCZYNSKA M A,OJAMIES P N,LACOSTE A M B,et al.Applications of machine learning to diagnosis and treatment of neurodegenerative diseases[J].Nat Rev Neurol,2020,16(8):440-456.
[7] CABITZA F,BANFI G.Machine learning in laboratory medicine:waiting for the flood?[J].Clin Chem Lab Med,2018,56(4):516-524.
[8] FENG G,GAN Z,WANG S,et al.Task-general and acoustic-invariant neural representation of speech categories in the human brain[J].Cereb Cortex,2018,28(9):3241-3254.
[9] LU S,XIE J,WEI X,et al.Machine learning-based prediction of the outcomes of cochlear implantation in patients with cochlear nerve deficiency and normal cochlea:a 2-year follow-up of 70 children[J].Front Neurosci,2022,16:895560.
[10] SONG Q,QI S,JIN C,et al.Functional brain connections identify sensorineural hearing loss and predict the outcome of cochlear implantation[J].Front Comput Neurosci,2022,16:825160.
[11] KIM H,KANG W S,PARK H J,et al.Cochlear implantation in postlingually deaf adults is time-sensitive towards positive outcome:prediction using advanced machine lear-ning techniques[J].Sci Rep,2018,8:18004.
[12] SHAFIEIBAVANI E,GOUDEY B,KIRAL I,et al.Predictive models for cochlear implant outcomes:perfor-mance,generalizability,and the impact of cohort size[J].Trends Hear,2021,25:23312165211066174.
[13] ANDERSON S R,JOCEWICZ R,KAN A,et al.Sound source localization patterns and bilateral cochlear implants:age at onset of deafness effects[J].PLoS One,2022,17(2):e0263516.
[14] CROWSON M G,LIN V,CHEN J M,et al.Machine learning and cochlear implantation—a structured review of opportunities and challenges[J].Otol Neurotol,2020,41(1):e36-e45.
[15] ZHAO K,SO H C.Drug repositioning for schizophrenia and depression/anxiety disorders:a machine learning approach leveraging expression data[J].IEEE J Biomed Heal Informatics,2019,23(3):1304-1315.
[16] CROWSON M G,DIXON P,MAHMOOD R,et al.Predicting postoperative cochlear implant performance using supervised machine learning[J].Otol Neurotol,2020,41(8):e1013-e1023.
[17] HAN J H,LEE H J,KANG H,et al.Brain plasticity can predict the cochlear implant outcome in adult-onset deafness[J].Front Hum Neurosci,2019,13:38.
[18] SUN Z,SEO J W,PARK H J,et al.Cortical reorganization following auditory deprivation predicts cochlear implant performance in postlingually deaf adults[J].Hum Brain Mapp,2021,42(1):233-244.
[19] KRAL A,YUSUF P A,LAND R.Higher-order auditory areas in congenital deafness:top-down interactions and corticocortical decoupling[J].Hear Res,2017,343:50-63.
[20] 张秋,华清泉,曹永茂.语前聋儿童人工耳蜗植入术后康复效果评估[J].听力学及言语疾病杂志,2018,26(4):423-426.
[21] 张秋,曹永茂,华清泉.人工耳蜗植入后目标因素评估体系信度和效度的研究[J].听力学及言语疾病杂志,2018,26(5):528-531.
[22] MUMTAZ W,MALIK A S.A comparative study of different eeg reference choices for diagnosing unipolar depression[J].Brain Topogr,2018,31(5):875-885.
[23] SINKE M R T,BUITENHUIS J W,VAN DER MAAS F,et al.The power of language:functional brain network topology of deaf and hearing in relation to sign language experience[J].Hear Res,2019,373:32-47.
[24] ANDIN J,HOLMER E.Reorganization of large-scale brain networks in deaf signing adults:the role of auditory cortex in functional reorganization following deafness[J].Neuropsychologia,2022,166:108139.
[25] HRIBAR M,?UPUT D,BATTELINO S,et al.Review article:structural brain alterations in prelingually deaf[J].Neuroimage,2020,220:117042.
[26] ALIZADEHSANI R,ABDAR M,ROSHANZAMIR M,et al.Machine learning-based coronary artery disease diagnosis:a comprehensive review[J].Comput Biol Med,2019,111:103346.
[27] DWYER D B,FALKAI P,KOUTSOULERIS N.Machine learning approaches for clinical psychology and psychiatry[J].Ann Rev Clin Psycho,2018,14:91-118.
[28] LAI Y H,TSAO Y,LU X,et al.Deep learning-based noise reduction approach to improve speech intelligibility for cochlear implant recipients[J].Ear Hear,2018,39(4):795-809.
[29] GRIMM R,PETTINATO M,GILLIS S,et al.Simulating speech processing with cochlear implants:how does channel interaction affect learning in neural networks?[J].PLoS One,2019,14(2):e0212134.
[30] INTARTAGLIA B,ZEITNOUNI A G,LEHMANN A.Recording EEG in cochlear implant users:guidelines for experimental design and data analysis for optimizing signal quality and minimizing artifacts[J].J Neurosci Methods,2022,375:109592.
[31] LAI K,LIU J,WANG J,et al.Resting-state EEG reveals global network deficiency in prelingually deaf children with late cochlear implantation[J].Front Pediatr,2022,10(5):909069.