机器学习模型在ABR波形解读中的应用研究进展
Application of machine learning model in ABR waveform interpretation
豆慢慢;关静;王秋菊
1:解放军总医院第六医学中心耳鼻咽喉头颈外科医学部耳鼻咽喉内科国家耳鼻咽喉疾病临床医学研究中心
2:浙江中医药大学医学技术与信息工程学院





[1] 中国听性脑干反应临床操作规范专家共识(2020)继续教育题目[J].中华耳鼻咽喉头颈外科杂志,2020,55(4):312-312.
[2] THALMEIER D,MILLER G,SCHNELTZER E,et al.Objective hearing threshold identification from auditory brainstem response measurements using supervised and self-supervised approaches[J].BMC Neurosci,2022 ,23(1):81.
[3] 耿跃华,石金祥.机器学习与脑电信号分析相结合的眩晕状态分类[J].中国组织工程研究,2022,26(29):4624-4631.
[4] 邱海龙,郭惠明,姚泽阳,等.人工智能在心血管医学中的应用[J].中国胸心血管外科临床杂志,2021,28(10):1160-1166.
[5] LLANOS F,XIE Z,CHANDRASEKARAN B.Biometric identification of listener identity from frequency following responses to speech[J].J Neural Eng,2019,16(5):056004.
[6] VALDERRAMA J T,DE LA TORRE A,ALVAREZ I,et al.Automatic quality assessment and peak identification of auditory brainstem responses with fitted parametric peaks[J].Comput Methods Programs Biomed,2014,114(3):262-275.
[7] SKOE E,KRAUS N.Auditory brain stem response to complex sounds:a tutorial[J].Ear Hear,2010,31(3):302-324.
[8] YOU E,LIN V,MIJOVIC T,et al.Artificial intelligence applications in otology:a state of the art review[J].Otolaryngol Head Neck Surg,2020,163(6):1123-1133.
[9] 李则辰,唐雨奇,刘涛,等.机器学习在听性脑干诱发电位数据分析中的应用研究[J].电子测量与仪器学报,2020,34(4):33-41.
[10] MCKEARNEY R M,MACKINNON R C.Objective auditory brainstem response classification using machine learning[J].Int J Audiol,2019,58(4):224-230.
[11] CHEN C,ZHAN L,PAN X,et al.Automatic recognition of auditory brainstem response characteristic waveform based on bidirectional long short-term memory[J].Front Med (Lausanne),2021,7:613708.DOI:10.3389/fmed.2020.613708
[12] MCKEARNEY R M,BELL S L,CHESNAYE M A,et al.Auditory brainstem response detection using machine learning:a comparison with statistical detection methods[J].Ear Hear,2022,43(3):949-960.
[13] VADAPALLI S,ABDELHALIM H,ZEESHAN S,et al.Artificial intelligence and machine learning approaches using gene expression and variant data for personalized medicine[J].Brief Bioinform,2022,23(5):191.
[14] ALLEN P,ALLAN C.Auditory processing disorders:relationship to cognitive processes and underlying auditory neural integrity[J].Int J Pediatr Otorhinolaryngol,2014,78(2):198-208.
[15] WIMALARATHNA H,ANKMNAL-VEERANNA S,ALLAN C,et al.Comparison of machine learning models to classify auditory brainstem responses recorded from children with auditory processing disorder[J].Comput Methods Programs Biomed,2021,200:105942.DOI:10.1016/j.cmph.2021.105942
[16] DOBROWOLSKI A,SUCHOCKI M,TOMCZYKIEWICZ K,et al.Classification of auditory brainstem response using wavelet decomposition and SVM network[J].Biocybern Biomed Eng,2016,36(2):427-436.
[17] HAENSSLE H A,FINK C,SCHNEIDERBAUER R,et al.Man against machine:diagnostic performance of a deep learning convolutional neural network for dermoscopic melanoma recognition in comparison to 58 dermatologists[J].Ann Oncol,2018,29(8):1836-1842.
[18] AL OSMAN R,AL OSMAN H.On the use of machine learning for classifying auditory brainstem responses:a scoping review[J].IEEE Access,2021,9:110592-110600.
[19] LLANOS F,XIE Z,CHANDRASEKARAN B.Biometric identification of listener identity from frequency following responses to speech[J].J Neural Eng,2019,16(5):056004.