不同材料修补不同面积中央性鼓膜穿孔的有限元模型分析

Finite Element Model Analysis of Different Materials for Repairing Central Tympanic Membrane Perforation with Different Sizes

张文伟;刘稳;刘后广;赵禹;

1:徐州医科大学

2:徐州医科大学附属医院耳鼻咽喉科

3:中国矿业大学机电工程学院

摘要
目的利用有限元模型研究不同移植材料修补不同面积中央性鼓膜穿孔对术后听力的影响。方法建立人正常中耳有限元模型,在鼓膜表面施加90 dB SPL声压得到镫骨底板位移的频率-幅度曲线(基准曲线,为正常中耳有限元镫骨底板位移曲线),通过与相关实验数据对比,验证模型可靠性,再建立3.10、10.66、22.25、42.0 mm2中央性鼓膜穿孔有限元模型,分别用0.25、0.5、1 mm厚度耳屏软骨以及0.4、0.8 mm厚度颞肌筋膜修补上述不同面积中央性鼓膜穿孔,获得术后镫骨底板位移频率-幅度曲线,并与基准曲线对比,分析术后听力情况。结果鼓膜穿孔面积3.10 mm2中央性鼓膜穿孔有限元模型,分别用0.25、0.5、1 mm厚度耳屏软骨以及0.4、0.8 mm厚度颞肌筋膜修补上述不同面积中央性鼓膜穿孔,获得术后镫骨底板位移频率-幅度曲线,并与基准曲线对比,分析术后听力情况。结果鼓膜穿孔面积3.10 mm2时,不同厚度的耳屏软骨和颞肌筋膜获得的镫骨底板位移均能基本符合基准曲线;穿孔面积10.66 mm2时,不同厚度的耳屏软骨和颞肌筋膜获得的镫骨底板位移均能基本符合基准曲线;穿孔面积10.66 mm2时,不同厚度的耳屏软骨或颞肌筋膜修补获得的镫骨底板位移曲线也基本贴近基准曲线,但0.25、0.5 mm厚度耳屏软骨的位移曲线更符合基准曲线;穿孔面积22.25 mm2时,不同厚度的耳屏软骨或颞肌筋膜修补获得的镫骨底板位移曲线也基本贴近基准曲线,但0.25、0.5 mm厚度耳屏软骨的位移曲线更符合基准曲线;穿孔面积22.25 mm2时,在低频区域,耳屏软骨比颞肌筋膜获得的镫骨位移曲线与基准曲线的差异更小,在高频区域,0.25、0.5 mm厚度耳屏软骨和0.4 mm厚度颞肌筋膜获得的镫骨位移曲线更贴近于基准曲线;穿孔面积42.0 mm2时,在低频区域,耳屏软骨比颞肌筋膜获得的镫骨位移曲线与基准曲线的差异更小,在高频区域,0.25、0.5 mm厚度耳屏软骨和0.4 mm厚度颞肌筋膜获得的镫骨位移曲线更贴近于基准曲线;穿孔面积42.0 mm2时,颞肌筋膜和1 mm厚耳屏软骨获得的镫骨底板位移曲线与基准曲线的差异较大,而0.25 mm或0.5 mm厚耳屏软骨差异较小,0.25 mm厚耳屏软骨效果最佳。结论使用耳屏软骨或颞肌筋膜作为移植材料修补较小中央性鼓膜穿孔后镫骨底板位移没有显著差异;随着穿孔面积增大,以较薄的耳屏软骨作为移植材料得到的镫骨底板位移曲线与基准曲线差异最小。
关键词
中央性鼓膜穿孔;鼓膜成形术;有限元分析;耳屏软骨;颞肌筋膜
基金项目(Foundation):
国家自然科学基金(51775547)
作者
张文伟;刘稳;刘后广;赵禹;
参考文献

1 Saliba I,Abela A,Arcand P.Tympanic membrane perforation:size,site and hearing evaluation[J].Int J Pediatr Otorhinolaryngol,2011,75(4):527-531.

2 楼正才,胡云星.鼓膜出血程度对外伤性鼓膜穿孔预后的影响[J].听力学及言语疾病杂志,2009,17(3):289-290.

3 Jellinge ME,Kristensen S,Larsen K.Spontaneous closure of traumatic tympanic membrane perforations:observational study[J].J Laryngol Otol,2015,129(10):950-954.

4 Araújo MM,Murashima AA,Alves VM,et al.Spontaneous healing of the tympanic membrane after traumatic perforation in rats[J].Braz J Otorhinolaryngol,2014,80(4):330-338.

5 Tachibana T,Kariya S,Orita Y,et al.Spontaneous closure of traumatic tympanic membrane perforation following long-term observation[J].Acta Otolaryngol,2019,139(6):487-491.

6 Volandri G,Di Puccio F,Forte P,et al.Biomechanics of the tympanic membrane[J].J Biomech,2011,44(7):1219-1236.

7 Gan RZ,Feng B,Sun Q.Three-dimensional finite element modeling of human ear for sound transmission[J].Ann Biomed Eng,2004,32(6):847-859.

8 田佳彬,饶柱石,塔娜,等.粘弹性本构对人耳动力学特性影响的数值研究[J].振动与冲击,2015,34(22):74-81.

9 Zhang X,Gan RZ.A comprehensive model of human ear for analysis of implantable hearing devices[J].IEEE Trans Biomed Eng,2011,58(10):3024-3027.

10 Zhang X,Gan RZ.Finite element modeling of energy absorbance in normal and disordered human ears[J].Hear Res,2013,301:146-155.DOI:10.1016/j.heares.2012.12.005.

11 Liu H,Zhang H,Yang J,et al.Influence of ossicular chain malformation on the performance of round-window stimulation:A finite element approach[J].Proc Inst Mech Eng H,2019,233(5):584-594.

12 Luo H,Wang F,Cheng C,et al.Mapping the Young's modulus distribution of the human tympanic membrane by microindentation[J].Hear Res,2019,378:75-91.DOI:10.1016/j.heares.2019.02.009.

13 Lobato L,Paul S,Cordioli J,et al.How stapes ankylosis and fracture affect middle ear dynamics:a numerical study[J].J Biomech Eng,2019,141(11):111011.

14 Rabie AN,Chang J,Ibrahim AM,et al.Use of tragal cartilage grafts in rhinoplasty:An anatomic study and review of the literature[J].Ear Nose Throat J,2015,94(4-5):E44-E49.

15 Morales-Avalos R,Soto-Domínguez A,García-Juárez J,et al.Characterization and morphological comparison of human dura mater,temporalis fascia,and pericranium for the correct selection of an autograft in duraplasty procedures[J].Surg Radiol Anat,2017,39(1):29-38.

16 Zahnert T,Hüttenbrink KB,Mürbe D,et al.Experimental investigations of the use of cartilage in tympanic membrane reconstruction[J].Am J Otol,2000,21(3):322-328.

17 Nimeskern L,Martínez AH,Sundberg J,et al.Mechanical evaluation of bacterial nanocellulose as an implant material for ear cartilage replacement[J].J Mech Behav Biomed Mater,2013,22:12-21.DOI:10.1016/j.jmbbm.2013.03.005.

18 Zwirner J,Ondruschka B,Scholze M,et al.Mechanical properties of native and acellular temporal muscle fascia for surgical reconstruction and computational modelling purposes[J].J Mech Behav Biomed Mater,2020,108:103833.DOI:10.1016/j.jmbbm.2020.103833.

19 Brummund MK,Sgard F,Petit Y,et al.Three-dimensional finite element modeling of the human external ear:simulation study of the bone conduction occlusion effect[J].J Acoust Soc Am,2014,135(3):1433-1444.

20 Grellmann W,Berghaus A,Haberland EJ,et al.Determination of strength and deformation behavior of human cartilage for the definition of significant parameters[J].J Biomed Mater Res A,2006,78(1):168-174.

21 姜泗长,顾瑞,王正敏,主编.耳科学[M].第二版.上海:上海科学技术出版社,2002.743-746.

22 Gan RZ,Cheng T,Dai C,et al.Finite element modeling of sound transmission with perforations of tympanic membrane[J].J Acoust Soc Am,2009,126(1):243-253.

23 Aibara R,Welsh JT,Puria S,et al.Human middle-ear sound transfer function and cochlear input impedance[J].Hear Res,2001,152(1-2):100-109.

24 Kaya I,Benzer M,Uslu M,et al.Butterfly cartilage tympanoplasty long-term results:excellent treatment method in small and medium sized perforations[J].Clin Exp Otorhinolaryngol,2018,11(1):23-29.

25 Mohamad SH,Khan I,Hussain SS.Is cartilage tympanoplasty more effective than fascia tympanoplasty?A systematic review[J].Otol Neurotol,2012,33(5):699-705.

26 Beutner D,Huttenbrink KB,Stumpf R,et al.Cartilage plate tympanoplasty[J].Otol Neurotol,2010,31(1):105-110.

27 Gan RZ,Wood MW,Dormer KJ.Human middle ear transfer function measured by double laser interferometry system[J].Otol Neurotol,2004,25(4):423-435.

28 De Greef D,Pires F,Dirckx JJ.Effects of model definitions and parameter values in finite element modeling of human middle ear mechanics[J].Hear Res,2017,344:195-206.DOI:10.1016/j.heares.2016.11.011.

29 Guinan JJ,Peake WT.Middle-ear characteristics of anesthetized cats[J].J Acoust Soc Am,1967,41(5):1237-1261.

30 Lerut B,Pfammatter A,Moons J,et al.Functional correlations of tympanic membrane perforation size[J].Otol Neurotol,2012,33(3):379-386.

31 Dawood MR.Frequency dependence hearing loss evaluation in perforated tympanic membrane[J].Int Arch Otorhinolaryngol,2017,21(4):336-342.

32 黄选兆,汪吉宝,孔维佳,主编.实用耳鼻咽喉头颈外科学[M].第二版.北京:人民卫生出版社,2008.708-709.

33 Daphalapurkar NP,Dai C,Gan RZ,et al.Characterization of the linearly viscoelastic behavior of human tympanic membrane by nanoindentation[J].J Mech Behav Biomed Mater,2009,2(1):82-92.