中耳力学研究的新进展与展望

张天宇 ;王舒琪 ;任柳杰;

摘要
<正>耳力学属于生物力学在耳科学的分支,研究领域包括内耳力学和中耳力学两大部分。中耳是听觉系统长期进化所形成的高效力学放大、阻抗匹配系统,中耳力学采用力学原理,通过测量、计算和分析声波激励下鼓膜、听骨链等的振动和形变特征,研究中耳鼓膜-听骨链-韧带-肌肉复合系统实现高效传音的力学机制,以及病理状态、听骨链置换等对中耳功能的影响。
关键词
基金项目(Foundation):
国家自然科学基金面上项目(81771014);; 上海市“科技创新行动计划”自然科学基金项目(20ZR1409900)
作者
张天宇 ;王舒琪 ;任柳杰;
参考文献

1 张天宇,陈永正.耳生物力学研究现状与展望(上)[J].中国眼耳鼻喉科杂志,2009,9(6):341-343.

2 张天宇,戴培东,杨琳.耳生物力学研究现状与展望(中)[J].中国眼耳鼻喉科杂志,2010,10(1):68-69.

3 张天宇,吴彩琴,戴培东.耳生物力学研究现状与展望(下)[J].中国眼耳鼻喉科杂志,2010,10(2):72-74.

4 Dobrev I,Farahmandi TS,R??sli C.Experimental investigation of the effect of middle ear in bone conduction[J].Hearing Research,2020,395:108041.

5 Chen T,Ren LJ,Yin DM,et al.A comparative study of MED-EL FMT attachment to the long process of the incus in intact middle ears and its attachment to disarticulated stapes head.[J].Hearing Research,2017,353:97-103.

6 Jeon D,Cho NH,Park K,et al.In vivo vibration measurement of middle ear structure using Doppler optical coherence tomography:preliminary study[J].Clinical and Experimental Otorhinolaryngology,2019,12(1):40-49.

7 Frear DL,Guan X,Stieger C,et al.Impedances of the inner and middle ear estimated from intracochlear sound pressures in normal human temporal bones[J].Hearing Research,2018,367:17-31.

8 Greene NT,Alhussaini MA,Easter JR,et al.Intracochlear pressure measurements during acoustic shock wave exposure[J].Hearing Research,2018,365:149-164.

9 Funnell WRJ,Maftoon N,Decraemer WF.Modeling of middle ear mechanics[M].The Middle Ear.Springer,New York,NY,2013.171-210.

10 Decraemer WF,de La Rochefoucauld O,Funnell WRJ,et al.Three-dimensional vibration of the malleus and incus in the living gerbil[J].Journal of the Association for Research in Otolaryngology,2014,15(4):483-510.

11 Cheng JT,Hamade M,Merchant SN,et al.Wave motion on the surface of the human tympanic membrane:holographic measurement and modeling analysis[J].The Journal of the Acoustical Society of America,2013,133(2):918-937.

12 Cheng JT,Maftoon N,Guignard J,et al.Tympanic membrane surface motions in forward and reverse middle ear transmissions[J].The Journal of the Acoustical Society of America,2019,145(1):272-291.

13 Rosowski JJ,Dobrev I,Khaleghi M,et al.Measurements of three-dimensional shape and sound-induced motion of the chinchilla tympanic membrane[J].Hearing Research,2013,301(SI):44-52.

14 Zhang TY,Ren LJ,Yang L,et al.Ethanol infiltration into the stapedio-vestibular joint reduces low-frequency vibration of the ossicular chain and round window membrane in the guinea pig[J].Acta Oto-laryngologica,2019,139(5):403-408.

15 Lobato L,Paul S,Cordioli J,et al.How stapes ankylosis and fracture affect middle ear dynamics:a numerical study[J].Journal of Biomechanical Engineering,2019,141(11):11101.

16 Cai L,Stomackin G,Perez NM,et al.Recovery from tympanic membrane perforation:effects on membrane thickness,auditory thresholds,and middle ear transmission[J].Hearing Research,2019,384:107813.

17 Dong W,Tian Y,Gao X,et al.Middle-ear sound transmission under normal,damaged,repaired and Reconstructed conditions[J].Otology & neurotology,2017,38(4):577-584.

18 Schraven SP,Mlynski R,Dalhoff E,et al.Coupling of an active middle-ear implant to the long process of the incus using an elastic clip attachment[J].Hearing Research,2016,340:179-184.

19 Chen T,Ren LJ,Yin DM,et al.A comparative study of MED-EL FMT attachment to the long process of the incus in intact middle ears and its attachment to disarticulated stapes head[J].Hearing Research,2017,353:97-103.

20 Muyshondt PGG,Aerts P,Dirckx JJJ.The effect of single-ossicle ear flexibility and eardrum cone orientation on quasi-static behavior of the chicken middle ear[J].Hearing Research,2019,378:13-22.

21 Muyshondt PGG,Dirckx JJJ.How flexibility and eardrum cone shape affect sound conduction in single-ossicle ears:a dynamic model study of the chicken middle ear[J].Biomechanics and Modeling in Mechanobiology,2020,19(1):233-249.

22 Muyshondt PGG,Soons JAM,De Greef D,et al.A single-ossicle ear:acoustic response and mechanical properties measured in duck[J].Hearing Research,2016,340:35-42.

23 Arechvo I,Zahnert T,Bornitz M,et al.The ostrich middle ear for developing an ideal ossicular replacement prosthesis[J].European Archives of Oto-Rhino-Laryngology,2013,270(1):37-44.

24 Peacock J,Spellman GM,Greene NT,et al.Scaling of the avian middle ear[J].Hearing Research,2020,395:108017.

25 Peacock J,Spellman GM,Tollin DJ,et al.A comparative study of avian middle ear mechanics[J].Hearing Research,2020,395:108043.

26 Stoppe T,Bornitz M,Lasurashvili N,et al.Function,applicability,and properties of a novel flexible total ossicular replacement prosthesis with a silicone coated ball and socket joint[J].Otology & Neurotology,2018,39(6):739-747.

27 Rusinek R,Warminski J,Szymanski M,et al.Dynamics of the middle ear ossicles with an SMA prosthesis[J].International Journal of Mechanical Sciences,2017,127(SI):163-175.

28 Milazzo M,Muyshondt PGG,Carstensen J,et al.De novo topology optimization of total ossicular replacement prostheses[J].Journal of the Mechanical Behavior of Biomedical Materials,2020,103:103541.

29 Tan HEI,Santa Maria PL,Wijesinghe P,et al.Optical coherence tomography of the tympanic membrane and middle ear:a review[J].Otolaryngology-Head and Neck Surgery,2018,159(3):424-438.

30 Wasson JD,Campbell L,Chambers S,et al.Effect of cochlear implantation on middle ear function:a three-month prospective study[J].The Laryngoscope,2018,128(5):1207-1212.

31 MacDougall D,Morrison L,Morrison C,et al.Optical coherence tomography doppler vibrometry measurement of stapes vibration in patients with stapes fixation and normal controls[J].Otology & Neurotology,2019,40(4):e349-e355.

32 Kuru I,Maier H,Müller M,et al.A 3D-printed functioning anatomical human middle ear model[J].Hearing Research,2016,340:204-213.

33 Hirsch JD,Vincent RL,Eisenman DJ.Surgical reconstruction of the ossicular chain with custom 3D printed ossicular prosthesis[J].3D Printing in Medicine,2017,3(1):1-8.

34 Rus R,Weremczuk A.Recent advances in periodic vibrations of the middle ear with a floating mass transducer[J].Meccanica,2020,55(12):2609-2621.

35 Mocanu H,Bornitz M,Lasurashvili N,et al.Evaluation of Vibrant? Soundbridge positioning and results with laser doppler vibrometry and the finite element model[J].Experimental and Therapeutic Medicine,2021,21(3):262.

36 Shin DH.Design study of a round window piezoelectric transducer for active middle ear implants[J].Sensors,2021,21(3):946.

37 Seong KW,Mun HJ,Shin DH,et al.A vibro-acoustic hybrid implantable microphone for middle ear hearing aids and cochlear implants[J].Sensors,2019,19(5):1117.

本文信息

PDF(1221K)

本文关键词相关文章

本文作者相关文章

张天宇 王舒琪 任柳杰