耳蜗力学进展——纪念Békésy获诺贝尔奖60周年

张天宇;任柳杰;李辰龙;王舒琪;姚文娟;丁光宏;

1:复旦大学附属眼耳鼻喉科医院眼耳鼻整形外科

2:复旦大学附属眼耳鼻喉科医院耳鼻喉科研究院

3:国家卫生健康委员会听觉医学重点实验室(复旦大学)

4:上海大学力学与工程科学学院

摘要
<正>从1961年Békésy揭示耳蜗内行波现象,开创实验听力学而获得诺贝尔生理学奖以来,耳蜗力学研究已取得了一系列重要成果和进展,尤其是外毛细胞主动响应机制和耳声发射现象的发现,并在临床中得以广泛应用,使得耳蜗微观力学领域成为持续研究的热点。随着“内耳振动测量技术”的不断创新迭代,Corti器微米级分辨率振动测量技术持续进步与成熟。本文综述自Békésy以来耳蜗力学的研究成果与进展,关注学科交叉、学术争鸣和技术进步。
关键词
基金项目(Foundation):
国家自然科学基金重点项目(11932010);国家自然科学基金面上项目(81771014);; 上海市“科技创新行动计划”自然科学基金项目(20ZR1409900)
作者
张天宇;任柳杰;李辰龙;王舒琪;姚文娟;丁光宏;
参考文献

1 Dallos P,Fay RR(Eds.).The cochlea [M].Springer Science & Business Media,2012.186-257.

2 Nuttall AL,Fridberger A.Instrumentation for studies of cochlear mechanics:from von Bekesy forward[J].Hearing research,2012,293(1-2):3-11.

3 Olson ES,Duifhuis H,Steele CR.Von Békésy and cochlear mechanics[J].Hearing research,2012,293(1-2):31-43.

4 Ni G,Elliott SJ,Ayat M,et al.Modelling cochlear mechanics[J].BioMed Research International,2014,2014:150637.

5 Ren L,Cheng HUA,Ding G,et al.Hydrodynamic modeling of cochlea and numerical simulation for cochlear traveling wave with consideration of fluid-structure interaction[J].Journal of Hydrodynamics,Ser.B,2013,25(2):167-173.

6 Kim N,Homma K,Puria S.Inertial bone conduction:symmetric and anti-symmetric components[J].Journal of the Association for Research in Otolaryngology,2011,12(3):261-279.

7 Chan WX,Yoon YJ,Kim N.Mechanism of bone-conducted hearing:mathematical approach[J].Biomechanics and Modeling in Mechanobiology,2018,17(6):1731-1740.

8 Ren LJ,Yu Y,Fang YQ,et al.Finite element simulation of cochlear traveling wave under air and bone conduction hearing[J].Biomechanics and Modeling in Mechanobiology,2021,20(4):1251-1265.

9 Koike T,Sakamoto C,Sakashita T,et al.Effects of a perilymphatic fistula on the passive vibration response of the basilar membrane[J].Hearing Research,2012,283(1-2):117-125.

10 Areias B,Parente MPL,Gentil F,et al.A finite element model to predict the consequences of endolymphatic hydrops in the basilar membrane[J].International Journal for Numerical Methods in Biomedical Engineering,2022,38(1):e3541.

11 Lee S,Koike T.Simulation of the basilar membrane vibration of endolymphatic hydrops[J].Procedia IUTAM,2017,(24):64-71.

12 Elliott SJ,Ni G.An elemental approach to modelling the mechanics of the cochlea[J].Hearing Research,2018,360:14-24.

13 Gao SS,Raphael PD,Wang R,et al.In vivo vibrometry inside the apex of the mouse cochlea using spectral domain optical coherence tomography[J].Biomedical Optics Express,2013,4(2):230-240.

14 Dong W,Xia A,Raphael PD,et al.Organ of Corti vibration within the intact gerbil cochlea measured by volumetric optical coherence tomography and vibrometry[J].Journal of Neurophysiology,2018,120(6):2847-2857.

15 Recio-Spinoso A,Oghalai JS.Differences between mechanical and neural tuning at the apex of the intact Guinea Pig cochlea[C]//AIP Conference Proceedings.AIP Publishing LLC,2018,1965(1):020002.

16 Lee HY.Volumetric optical coherence tomography vibrometry for the study of cochlear mechanics[D].Stanford University,2016.

17 Olson ES,Strimbu CE.Cochlear mechanics:new insights from vibrometry and optical coherence tomography[J].Current Opinion in Physiology,2020,18:56-62.

18 Cooper NP,Vavakou A,van der Heijden M.Vibration hotspots reveal longitudinal funneling of sound-evoked motion in the mammalian cochlea[J].Nature Communications,2018,9(1):1-12.

19 Lee HY,Raphael PD,Park J,et al.Noninvasive in vivo imaging reveals differences between tectorial membrane and basilar membrane traveling waves in the mouse cochlea[J].Proceedings of the National Academy of Sciences,2015,112(10):3128-3133.

20 Ren T,He W.Two-tone distortion in reticular lamina vibration of the living cochlea[J].Communications Biology,2020,3(1):1-8.

21 Strimbu CE,Lin NC,Olson ES.Optical coherence tomography reveals complex motion between the basilar membrane and organ of Corti in the gerbil cochlea[J].The Journal of the Acoustical Society of America,2018,143(3):1898-1898.

22 Lee HY,Raphael PD,Xia A,et al.Two-dimensional cochlear micromechanics measured in vivo demonstrate radial tuning within the mouse organ of Corti[J].Journal of Neuroscience,2016,36(31):8160-8173.

23 Xia A,Udagawa T,Raphael PD,et al.Basilar membrane vibration after targeted removal of the third row of OHCs and Deiters cells[C]//AIP Conference Proceedings.AIP Publishing LLC,2018,1965(1):020004.

24 Puria S,Rosowski JJ.Békésy's contributions to our present understanding of sound conduction to the inner ear[J].Hearing Research,2012,293(1-2):21-30.

25 张天宇,王舒琪,任柳杰.中耳力学研究的新进展与展望[J].听力学及言语疾病杂志,2022,30(2):231-234.

26 Moore BCJ.Contributions of von Békésy to psychoacoustics[J].Hearing Research,2012,293(1-2):51-57.

27 The primary auditory neurons of the mammalian cochlea[M].New York,NY:Springer New York,2016.

28 刘爱国,王正敏.听神经时间编码特性[J].中国眼耳鼻喉科杂志,2011,2(3):183-186.

本文信息

PDF(1194K)

本文关键词相关文章