碱基编辑技术的新进展及在耳蜗中的应用前景
潘豪来;倪丽艳;陈波蓓;
1:温州医科大学附属第二医院耳鼻咽喉科
1 Wiedenheft B,Sternberg SH,Doudna JA.RNA-guided genetic silencing systems in bacteria and archaea[J].Nature,2012,482(7385):331-338.
2 Chandrasegaran S,Carroll D.Origins of programmable nucleases for genome engineering[J].Journal of Molecular Biology,2016,428(sptB):963-989.
3 Cox DB,Platt RJ,Zhang F.Therapeutic genome editing:prospects and challenges[J].Nature Medicine,2015,21(2):121-131.
4 Li M,Zhao L,Page-Mccaw PS,et al.Zebrafish genome engineering using the CRISPR-Cas9 system[J].Trends in Genetics,2016,32(12):815-827.
5 Lin S,Staahl BT,Alla RK,et al.Enhanced homology-directed human genome engineering by controlled timing of CRISPR/Cas9 delivery[J].Elife,2014,3,e04766.DOI:10.7554/eLife.04766.
6 Marx V.Base editing a CRISPR way[J].Nature Methods,2018,15(10):767-770.
7 Landrum MJ,Lee JM,Benson M,et al.ClinVar:public archive of interpretations of clinically relevant variants[J].Nucleic Acids Res,2016,44(D1):D862-868.
8 Komor AC,Kim YB,Packer MS,et al.Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage[J].Nature,2016,533(7603):420-424.
9 Zong Y,Wang Y,Li C,et al.Precise base editing in rice,wheat and maize with a Cas9-cytidine deaminase fusion[J].Nat Biotechnol,2017,35(5):438-440.
10 Thuronyi BW,Koblan LW,Levy JM,et al.Continuous evolution of base editors with expanded target compatibility and improved activity[J].Nat Biotechnol,2019,37(9):1070-1079.
11 Hu JH,Miller SM,Geurts MH,et al.Evolved Cas9 variants with broad PAM compatibility and high DNA specificity[J].Nature,2018,556(7699):57-63.
12 Gehrke JM,Cervantes O,Clement MK,et al.An APOBEC3A-Cas9 base editor with minimized bystander and off-target activities[J].Nat Biotechnol,2018,36(10):977-982.
13 Kim YB,Komor AC,Levy JM,et al.Increasing the genome-targeting scope and precision of base editing with engineered Cas9-cytidine deaminase fusions[J].Nat Biotechnol,2017,35(4):371-376.
14 Zafra MP,Schatoff EM,Katti A,et al.Optimized base editors enable efficient editing in cells,organoids and mice[J].Nat Biotechnol,2018,36(9):888-893.
15 Tan J,Zhang F,Karcher D,et al.Engineering of high-precision base editors for site-specific single nucleotide replacement[J].Nature Communications,2019,10(1):439.
16 Komor AC,Zhao KT,Packer MS,et al.Improved base excision repair inhibition and bacteriophage Mu Gam protein yields C:G-to-T:a base editors with higher efficiency and product purity[J].Sci Adv,2017,3(8):eaao4774.DOI:10.1126/sciadv.aao4774.
17 Zuo E,Sun Y,Wei W,et al.Cytosine base editor generates substantial off-target single-nucleotide variants in mouse embryos[J].Science,2019,364(6347):289-292.
18 Jin S,Zong Y,Gao Q,et al.Cytosine,but not adenine,base editors induce genome-wide off-target mutations in rice[J].Science,2019,364(6437):292-295.
19 Koblan LW,Doman JL,Wilson C,et al.Improving cytidine and adenine base editors by expression optimization and ancestral reconstruction[J].Nat Biotechnol,2018,36(9):843-846.
20 Fumagalli D,Gacquer D,Rothe F,et al.Principles governing A-to-I RNA editing in the breast cancer transcriptome[J].Cell Reports,2015,13(2):277-289.
21 Han L,Diao L,Yu S,et al.The genomic landscape and clinical relevance of A-to-I RNA editing in human cancers[J].Cancer Cell,2015,28(4):515-528.
22 Rice GI,Forte GM,Szynkiewicz M,et al.Assessment of interferon-related biomarkers in Aicardi-Goutieres syndrome associated with mutations in TREX1,RNASEH2A,RNASEH2B,RNASEH2C,SAMHD1,and ADAR:a case-control study[J].Lancet Neurol,2013,12(12):1159-1169.
23 Silberberg G,Lundin D,Navon R,et al.Deregulation of the A-to-I RNA editing mechanism in psychiatric disorders[J].Human Molecular Genetics,2012,21(2):311-321.
24 Grünewald J,Zhou R,Garcia SP,et al.Transcriptome-wide off-target RNA editing induced by CRISPR-guided DNA base editors[J].Nature,2019,569(7756):433-437.
25 Rees HA,Wilson C,Doman JL,et al.Analysis and minimization of cellular RNA editing by DNA adenine base editors[J].Sci Adv,2019,5(5):eaax5717.DOI:10.1126/sciadv.aax5717.
26 Grunewald J,Zhou R,Iyer S,et al.CRISPR DNA base editors with reduced RNA off-target and self-editing activities[J].Nat Biotechnol,2019,37(9):1041-1048.
27 Song CQ,Jiang T,Richter M,et al.Adenine base editing in an adult mouse model of tyrosinaemia[J].Nat Biomed Eng,2020,4(1):125-130.
28 Jiang T,Henderson JM,Coote K,et al.Chemical modifications of adenine base editor mRNA and guide RNA expand its application scope[J].Nature Communications,2020,11(1):1979.
29 Swiech L,Heidenreich M,Banerjee A,et al.In vivo interrogation of gene function in the mammalian brain using CRISPR-Cas9[J].Nature biotechnology,2015,33(1):102-106.
30 Senis E,Fatenros C,Groe S,et al.CRISPR/Cas9-mediated genome engineering:an adeno-associated viral (AAV) vector toolbox[J].Biotechnology Journal,2014,9(11):1402-1412.
31 Ran FA,Cong L,Yan WX,et al.In vivo genome editing using Staphylococcus aureus Cas9[J].Nature,2015,520(7546):186-191.
32 Agudelo D,Carter S,Velimirovic M,et al.Versatile and robust genome editing with streptococcus thermophilus CRISPR1-Cas9[J].Genome Res,2020,30(1):107-117.
33 Ibraheim R,Song CQ,Mir A,et al.All-in-one adeno-associated virus delivery and genome editing by Neisseria meningitidis Cas9 in vivo[J].Genome Biology,2018,19(1):137.
34 Edraki A,Mir A,Ibraheim R,et al.A compact,high-accuracy Cas9 with a dinucleotide PAM for in vivo genome editing[J].Mol Cell,2019,73(4):714-726.
35 Angeli S,Lin X,Liu XZ.Genetics of hearing and deafness[J].Anat Rec (Hoboken),2012,295(11):1812-1829.
36 Zhang H,Pan H,Zhou C,et al.Simultaneous zygotic inactivation of multiple genes in mouse through CRISPR/Cas9-mediated base editing[J].Development,2018,145(20).DOI:10.1242/dev.168906.
37 Yeh WH,Chiang H,Rees HA,et al.In vivo base editing of post-mitotic sensory cells[J].Nature Communications,2018,9(1):2184.
38 Rees HA,Komor AC,Yeh WH,et al.Improving the DNA specificity and applicability of base editing through protein engineering and protein delivery[J].Nature Communications,2017,8:15790.DOI:10.1038/ncomms15790.