碱基编辑技术的新进展及在耳蜗中的应用前景

潘豪来;倪丽艳;陈波蓓;

1:温州医科大学附属第二医院耳鼻咽喉科

摘要
<正>大多数感音神经性聋与基因突变相关(Morton等,2006), 基因靶向治疗似乎是一种更精确的治疗方式。CrispR/cas9系统已经超越锌指或TALLEN成为基因编辑首选([1]),但是会切除引导RNA配对的双链基因序列,剪切产生的双链DNA粘性断端诱导被编辑的细胞启动基因修复程序来修补这一缺损。然而诸如非同源断端连接或者同源基因引导修复均不能完美地将单碱基突变序列修复为野生型序列([1]),但是会切除引导RNA配对的双链基因序列,剪切产生的双链DNA粘性断端诱导被编辑的细胞启动基因修复程序来修补这一缺损。然而诸如非同源断端连接或者同源基因引导修复均不能完美地将单碱基突变序列修复为野生型序列([2~5])。近年研究通过改进CrispR/Cas9技术,
关键词
基金项目(Foundation):
作者
潘豪来;倪丽艳;陈波蓓;
参考文献

1 Wiedenheft B,Sternberg SH,Doudna JA.RNA-guided genetic silencing systems in bacteria and archaea[J].Nature,2012,482(7385):331-338.

2 Chandrasegaran S,Carroll D.Origins of programmable nucleases for genome engineering[J].Journal of Molecular Biology,2016,428(sptB):963-989.

3 Cox DB,Platt RJ,Zhang F.Therapeutic genome editing:prospects and challenges[J].Nature Medicine,2015,21(2):121-131.

4 Li M,Zhao L,Page-Mccaw PS,et al.Zebrafish genome engineering using the CRISPR-Cas9 system[J].Trends in Genetics,2016,32(12):815-827.

5 Lin S,Staahl BT,Alla RK,et al.Enhanced homology-directed human genome engineering by controlled timing of CRISPR/Cas9 delivery[J].Elife,2014,3,e04766.DOI:10.7554/eLife.04766.

6 Marx V.Base editing a CRISPR way[J].Nature Methods,2018,15(10):767-770.

7 Landrum MJ,Lee JM,Benson M,et al.ClinVar:public archive of interpretations of clinically relevant variants[J].Nucleic Acids Res,2016,44(D1):D862-868.

8 Komor AC,Kim YB,Packer MS,et al.Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage[J].Nature,2016,533(7603):420-424.

9 Zong Y,Wang Y,Li C,et al.Precise base editing in rice,wheat and maize with a Cas9-cytidine deaminase fusion[J].Nat Biotechnol,2017,35(5):438-440.

10 Thuronyi BW,Koblan LW,Levy JM,et al.Continuous evolution of base editors with expanded target compatibility and improved activity[J].Nat Biotechnol,2019,37(9):1070-1079.

11 Hu JH,Miller SM,Geurts MH,et al.Evolved Cas9 variants with broad PAM compatibility and high DNA specificity[J].Nature,2018,556(7699):57-63.

12 Gehrke JM,Cervantes O,Clement MK,et al.An APOBEC3A-Cas9 base editor with minimized bystander and off-target activities[J].Nat Biotechnol,2018,36(10):977-982.

13 Kim YB,Komor AC,Levy JM,et al.Increasing the genome-targeting scope and precision of base editing with engineered Cas9-cytidine deaminase fusions[J].Nat Biotechnol,2017,35(4):371-376.

14 Zafra MP,Schatoff EM,Katti A,et al.Optimized base editors enable efficient editing in cells,organoids and mice[J].Nat Biotechnol,2018,36(9):888-893.

15 Tan J,Zhang F,Karcher D,et al.Engineering of high-precision base editors for site-specific single nucleotide replacement[J].Nature Communications,2019,10(1):439.

16 Komor AC,Zhao KT,Packer MS,et al.Improved base excision repair inhibition and bacteriophage Mu Gam protein yields C:G-to-T:a base editors with higher efficiency and product purity[J].Sci Adv,2017,3(8):eaao4774.DOI:10.1126/sciadv.aao4774.

17 Zuo E,Sun Y,Wei W,et al.Cytosine base editor generates substantial off-target single-nucleotide variants in mouse embryos[J].Science,2019,364(6347):289-292.

18 Jin S,Zong Y,Gao Q,et al.Cytosine,but not adenine,base editors induce genome-wide off-target mutations in rice[J].Science,2019,364(6437):292-295.

19 Koblan LW,Doman JL,Wilson C,et al.Improving cytidine and adenine base editors by expression optimization and ancestral reconstruction[J].Nat Biotechnol,2018,36(9):843-846.

20 Fumagalli D,Gacquer D,Rothe F,et al.Principles governing A-to-I RNA editing in the breast cancer transcriptome[J].Cell Reports,2015,13(2):277-289.

21 Han L,Diao L,Yu S,et al.The genomic landscape and clinical relevance of A-to-I RNA editing in human cancers[J].Cancer Cell,2015,28(4):515-528.

22 Rice GI,Forte GM,Szynkiewicz M,et al.Assessment of interferon-related biomarkers in Aicardi-Goutieres syndrome associated with mutations in TREX1,RNASEH2A,RNASEH2B,RNASEH2C,SAMHD1,and ADAR:a case-control study[J].Lancet Neurol,2013,12(12):1159-1169.

23 Silberberg G,Lundin D,Navon R,et al.Deregulation of the A-to-I RNA editing mechanism in psychiatric disorders[J].Human Molecular Genetics,2012,21(2):311-321.

24 Grünewald J,Zhou R,Garcia SP,et al.Transcriptome-wide off-target RNA editing induced by CRISPR-guided DNA base editors[J].Nature,2019,569(7756):433-437.

25 Rees HA,Wilson C,Doman JL,et al.Analysis and minimization of cellular RNA editing by DNA adenine base editors[J].Sci Adv,2019,5(5):eaax5717.DOI:10.1126/sciadv.aax5717.

26 Grunewald J,Zhou R,Iyer S,et al.CRISPR DNA base editors with reduced RNA off-target and self-editing activities[J].Nat Biotechnol,2019,37(9):1041-1048.

27 Song CQ,Jiang T,Richter M,et al.Adenine base editing in an adult mouse model of tyrosinaemia[J].Nat Biomed Eng,2020,4(1):125-130.

28 Jiang T,Henderson JM,Coote K,et al.Chemical modifications of adenine base editor mRNA and guide RNA expand its application scope[J].Nature Communications,2020,11(1):1979.

29 Swiech L,Heidenreich M,Banerjee A,et al.In vivo interrogation of gene function in the mammalian brain using CRISPR-Cas9[J].Nature biotechnology,2015,33(1):102-106.

30 Senis E,Fatenros C,Groe S,et al.CRISPR/Cas9-mediated genome engineering:an adeno-associated viral (AAV) vector toolbox[J].Biotechnology Journal,2014,9(11):1402-1412.

31 Ran FA,Cong L,Yan WX,et al.In vivo genome editing using Staphylococcus aureus Cas9[J].Nature,2015,520(7546):186-191.

32 Agudelo D,Carter S,Velimirovic M,et al.Versatile and robust genome editing with streptococcus thermophilus CRISPR1-Cas9[J].Genome Res,2020,30(1):107-117.

33 Ibraheim R,Song CQ,Mir A,et al.All-in-one adeno-associated virus delivery and genome editing by Neisseria meningitidis Cas9 in vivo[J].Genome Biology,2018,19(1):137.

34 Edraki A,Mir A,Ibraheim R,et al.A compact,high-accuracy Cas9 with a dinucleotide PAM for in vivo genome editing[J].Mol Cell,2019,73(4):714-726.

35 Angeli S,Lin X,Liu XZ.Genetics of hearing and deafness[J].Anat Rec (Hoboken),2012,295(11):1812-1829.

36 Zhang H,Pan H,Zhou C,et al.Simultaneous zygotic inactivation of multiple genes in mouse through CRISPR/Cas9-mediated base editing[J].Development,2018,145(20).DOI:10.1242/dev.168906.

37 Yeh WH,Chiang H,Rees HA,et al.In vivo base editing of post-mitotic sensory cells[J].Nature Communications,2018,9(1):2184.

38 Rees HA,Komor AC,Yeh WH,et al.Improving the DNA specificity and applicability of base editing through protein engineering and protein delivery[J].Nature Communications,2017,8:15790.DOI:10.1038/ncomms15790.

本文信息

PDF(136K)

本文关键词相关文章

本文作者相关文章

潘豪来倪丽艳陈波蓓