耳蜗力学:力学仿真模型

张天宇;任柳杰;李辰龙;王心玥;华诚;姚文娟;丁光宏;

1:复旦大学附属眼耳鼻喉科医院眼耳鼻整形外科

2:复旦大学附属眼耳鼻喉科医院耳鼻喉科研究院

3:国家卫生健康委员会听觉医学重点实验室复旦大学

4:复旦大学航空航天系

摘要
<正>耳蜗力学研究的两大手段——实验测量与力学模型仿真,两者相辅相成,实验测量为模型建立和验证提供数据,力学模型仿真则通过对物理现象的再现和分析,揭示现象背后的机制。力学仿真是力学学科理论、实验、仿真三大研究工具之一,正如生物力学之父冯元桢先生在其著作《生物力学》序中所述,“......用力学的方法来处理从前不属于力学的问题,使许多医学及生理学上知其然而不知其所以然的观察及经验有了较深的了解”。力学仿真成本低、可重复、可控性强,
关键词
基金项目(Foundation):
国家自然科学基金重点项目(11932010,82101221,81771014);; 上海市“科技创新行动计划”自然科学基金项目(20ZR1409900)
作者
张天宇;任柳杰;李辰龙;王心玥;华诚;姚文娟;丁光宏;
参考文献

1 Ni G,Elliott SJ,Ayat M,et al.Modelling cochlear mechanics[J].BioMed Research International,2014,2014,Article ID150637:1-42.

2 Givelberg E,Bunn J.A comprehensive three-dimensional model of the cochlea[J].Journal of Computational Physics,2003,191(2):377-391.

3 Ren LJ,Hua C,Ding GH,et al.Hydrodynamic modeling of cochlea and numerical simulation for cochlear traveling wave with consideration of fluid-structure interaction[J].Journal of Hydrodynamics (Ser B),2013,25(2):167-173.

4 Ren L,Hua C,Ding G,et al.Parameter analysis of 2d cochlear model and quantitative research on the traveling wave propagation[J].Journal of Mechanics in Medicine and Biology,2017,17(02):1750033.

5 Xu L,Huang X,Ta N,et al.Finite element modeling of the human cochlea using fluid-structure interaction method[J].Journal of Mechanics in Medicine and Biology,2015,15(3):1550039.

6 Yao W,Zhong J,Duan M.Three-dimensional finite-element analysis of the cochlear hypoplasia[J].Acta Oto-Laryngologica,2018,138(11):961-965.

7 Ren LJ,Hua C,Ding GH,et al.Three-dimensional finite element hydrodynamical modeling of straight and spiral cochlea[C]//AIP Conference Proceedings.AIP Publishing LLC,2018,1965(1):030003.

8 Areias B,Parente M,Gentil F,et al.Influence of the basilar membrane shape and mechanical properties in the cochlear response:A numerical study[J].Proceedings of the Institution of Mechanical Engineers,Part H:Journal of Engineering in Medicine,2021,235(7):743-750.

9 Elliott SJ,Ni G,Mace BR,et al.A wave finite element analysis of the passive cochlea[J].The Journal of the Acoustical Society of America,2013,133(3):1535-1545.

10 Wang X,Keefe DH,Gan RZ.Predictions of middle-ear and passive cochlear mechanics using a finite element model of the pediatric ear[J].The Journal of the Acoustical Society of America,2016,139(4):1735-1746.

11 张天宇,任柳杰,李辰龙等.耳蜗力学进展——纪念Békésy获诺贝尔奖60周年[J].听力学及言语疾病杂志,2022,3:343-346.

12 Kikidis D,Bibas A.A clinically oriented introduction and review on finite element models of the human cochlea[J].BioMed research international,2014,2014,Article ID 975070:1-8.

13 Chan WX,Yoon YJ,Kim N.Mechanism of bone-conducted hearing:mathematical approach[J].Biomechanics and Modeling in Mechanobiology,2018,17(6):1731-1740.

14 Ren LJ,Yu Y,Fang YQ,et al.Finite element simulation of cochlear traveling wave under air and bone conduction hearing[J].Biomechanics and Modeling in Mechanobiology,2021,20(4):1251-1265.

15 Guan X,Cheng YS,Galaiya DJ,et al.Bone-conduction hyperacusis induced by superior canal dehiscence in human:the underlying mechanism[J].Scientific reports,2020,10(1):1-11.

16 Oh Y,Lim J,Cho YS,et al.Relationship between Endolymphatic Hydrops and Symptoms of Meniere Disease in Acoustic Hearing[J].ORL,2021,83(3):172-180.

17 Areias B,Parente MPL,Gentil F,et al.A finite element model to predict the consequences of endolymphatic hydrops in the basilar membrane[J].International Journal for Numerical Methods in Biomedical Engineering,2022,38(1):e3541.

18 Zhang J,Tian J,Ta N,et al.Finite element analysis of round-window stimulation of the cochlea in patients with stapedial otosclerosis[J].The Journal of the Acoustical Society of America,2019,146(6):4122-4130.

19 Brown MA,Ji XD,Gan RZ.3D Finite element modeling of blast wave transmission from the external ear to cochlea[J].Annals of Biomedical Engineering,2021,49(2):757-768.

20 Wang X,Wang L,Zhou J,et al.Finite element modelling of human auditory periphery including a feed-forward amplification of the cochlea[J].Computer methods in biomechanics and biomedical engineering,2014,17(10):1096-1107.

21 Ni G,Elliott SJ,Baumgart J.Finite-element model of the active organ of Corti[J].Journal of the Royal Society Interface,2016,13(115):20150913.

22 Saremi A,Stenfelt S.Effect of metabolic presbyacusis on cochlear responses:a simulation approach using a physiologically-based model[J].The Journal of the Acoustical Society of America,2013,134(4):2833-2851.

23 Saremi A,Stenfelt S.The effects of noise-induced hair cell lesions on cochlear electromechanical responses:a computational approach using a biophysical model[J].International Journal for Numerical Methods in Biomedical Engineering,2022:e3582.

24 张天宇,王舒琪,任柳杰,等.耳蜗力学:基底膜行波测量技术进展[J].听力学及言语疾病杂志,2022,30(4):457-460.

本文信息

PDF(246K)

本文关键词相关文章