慢性噪声致听损伤患者的前庭功能分析

The Vestibular Function in Patients with Chronic Noise-induced Hearing Loss

郭向东;王庆林;梅祥胜;姚卫杰;杨晓刚;

1:河南中医药大学第一附属医院耳鼻喉科

2:河南医学高等专科学校

摘要
目的探讨慢性噪声损伤对噪声致听损伤患者前庭功能的影响。方法 40例(80耳)慢性噪声致听损伤患者根据2~8 kHz平均听阈分为≤40 dB HL 32耳(A组),≥41 dB HL 48耳(B组),另选择40例年龄和性别相匹配的听力正常无噪声暴露者为对照组,分别进行纯音测听、冷热试验和颈性前庭诱发肌源性电位(cervical vestibular evoked myogenic potential,cVEMP)等检查。结果与对照组相比,噪声性聋组2~8 kHz的平均听阈升高(t=26.478、41.252、42.279、36.258,P<0.05),cVEMP的P13和N23潜伏期延长,P13-N23振幅减小,差异有统计学意义(t=11.194、14.642、-4.804,P<0.05);噪声致听损伤组纯音听阈、cVEMP和冷热试验的异常率分别为100%(80/80)、66.3%(53/80)和26.3%(21/80),对照组分别为0(0/80)、7.5%(6/80)和3.8%(3/80),前者显著高于后者(χ2=160.000、59.312、15.882,P<0.05);B组cVEMP和冷热试验的异常率分别为83.3%(40/48)和27.1%(13/48),A组分别为40.6%(13/32)和25.0%(8/32),两组cVEMP的异常率差异有统计学意义(χ2=160.000、59.312、15.882,P<0.05);B组cVEMP和冷热试验的异常率分别为83.3%(40/48)和27.1%(13/48),A组分别为40.6%(13/32)和25.0%(8/32),两组cVEMP的异常率差异有统计学意义(χ2=15.663,P<0.05),而A、B两组冷热试验的异常率差异无统计学意义(χ2=15.663,P<0.05),而A、B两组冷热试验的异常率差异无统计学意义(χ2=0.043,P>0.05)。结论慢性噪声致听损伤患者除了耳蜗功能受损外,前庭功能受损的可能性也很大,且内耳下部(耳蜗和球囊)比内耳上部(半规管)更容易受到噪声暴露的影响。
关键词
噪声性聋;冷热试验;前庭诱发肌源性电位;球囊;椭圆囊
基金项目(Foundation):
作者
郭向东;王庆林;梅祥胜;姚卫杰;杨晓刚;
参考文献

1 Royster JD.Preventing noise-induced hearing loss[J].NC Med J,2017,78:113.

2 陈耔辰,张玉忠,徐勇,等.听神经病患者的前庭功能评估[J].听力学及言语疾病杂志,2018,26:232.

3 Jamesdaniel S,Rosati R,Westrick J,et al.Chronic lead exposure induces cochlear oxidative stress and potentiates noise-induced hearing loss[J].Toxicol Lett,2018,292:175.

4 Zheng F,Zuo J.Cochlear hair cell regeneration after noise-induced hearing loss:Does regeneration follow development[J]?Hear Res,2017,349:182.

5 Drexl M,Krause E,Gürkov R,et al.Responses of the human inner ear to low-frequency sound[J].Adv Exp Med Biol,2016,894:275.

6 Curthoys IS,Vulovic V,Burgess AM,et al.Neural basis of new clinical vestibular tests:otolithic neural responses to soundand vibration[J].Clin Exp Pharmacol Physiol,2014,41:371.

7 Abd El-salam NM,Ismail EI,El-sharabasy AE.Evaluation of cervical vestibular evoked myogenic potential in subjects with chronic noise exposure[J].J Int Adv Otol,2017,13:358.

8 Singh NK,Sasidharan CS.Effect of personal music system use on sacculocollic reflex assessed by cervical vestibular-evoked myogenic potential:a preliminary investigation[J].Noise Health,2016,18:104.

9 Wen J,Duan N,Wang Q,et al.Protective effect of propofol on noise-induced hearing loss[J].Brain Res,2017,1657:95.

10 Le TN,Straatman LV,Lea J,et al.Current insights in noise-induced hearing loss:a literature review of the underlying mechanism,pathophysiology,asymmetry,and management options[J].J Otolaryngol Head Neck Surg,2017,46:41.

11 Lobarinas E,Salvi R,Ding D.Selective inner hair cell dysfunction in chinchillas impairs hearing-in-noise in the absence of outer hair cell loss[J].J Assoc Res Otolaryngol,2016,17:89.

12 Dalgic A,Yilmaz O,Hidir Y,et al.Analysis of vestibular evoked myogenic potentials and electrocochleography in noise induced hearing loss[J].J Int Adv Otol,2015,11:127.

13 Stewart C,Yu Y,Huang J,et al.Effects of high intensity noise on the vestibular system in rats[J].Hear Res,2016,335:118.

14 Stromberg AK,Olofsson A,Westin M,et al.Changes in cochlear function related to acoustic stimulation of cervical vestibularevoked myogenic potential stimulation[J].Hear Res,2016,340:43.

15 Stewart CE,Kanicki AC,Altschuler RA,et al.Vestibular short-latency evoked potential abolished by low-frequency noise exposure in rats[J].J Neurophysiol,2018,19:662.

16 Maxwell AK,Banakis Hartl RM,Greene NT,et al.Semicircular canal pressure changes during high-intensity acoustic stimulation[J].Otol Neurotol,2017,38:1043.